Một tia sáng chiếu tới gương phẳng nằm ngang với góc tới i= 40°. Góc hợp bởi tia phản xạ với mặt phẳng nằm ngang là bao nhiêu? Nếu tia tới cố định, để có tia phản xạ nằm ngang thì phải quay gương 1 góc nhỏ nhất là bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Góc AOB kề bù góc BOC => A,O,C thẳng hàng
Góc AOB kề bù góc AOD => B,O,D thẳng hàng
Do đó AC cắt BD tại O => góc BOC và góc AOD là 2 góc đối đỉnh.
b) Om, On là các tia được dựng như đề bài---> Dễ dàng có được góc mOC= góc nOA
Vì A,O,C thẳng hàng nên góc AOm+ góc mOC=180 => góc AOm+ góc nOA= 180
Vậy góc AOm kề bù góc nOA => 2 tia On, Om cùng nằm trên 1 đường thẳng mà 2 tia này lại nằm trên 2 mp đối nhau theo bờ AC--> tia đối
( 1 - x )( x - 2 ) > 0
Ta xét hai trường hợp sau :
1. \(\hept{\begin{cases}1-x>0\\x-2>0\end{cases}}\Rightarrow\hept{\begin{cases}-x>-1\\x>2\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)( loại )
2. \(\hept{\begin{cases}1-x< 0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}-x< -1\\x< 2\end{cases}}\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\Rightarrow1< x< 2\)
Vậy với 1 < x < 2 thì ( 1 - x )( x - 2 ) > 0
\(\left(1-x\right)\left(x-2\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}1-x>0\\x-2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x>2\end{cases}\Leftrightarrow x>2}\)
\(\Leftrightarrow\orbr{\begin{cases}1-x< 0\\x-2< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 1\\x< 2\end{cases}\Leftrightarrow x< 1}\)
vậy....
Dài đấy :))
a) \(\left|x-1\right|-\left(-2\right)^3=9\cdot\left(-1\right)^{100}\)
\(\Leftrightarrow\left|x-1\right|-\left(-8\right)=9\cdot1\)
\(\Leftrightarrow\left|x-1\right|+8=9\)
\(\Leftrightarrow\left|x-1\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
b) \(\frac{x-2}{-4}=\frac{-9}{x-2}\)( ĐKXĐ : \(x\ne2\))
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=-4\cdot\left(-9\right)\)
\(\Leftrightarrow\left(x-2\right)^2=36\)
\(\Leftrightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}\left(tmđk\right)\)
c) \(\frac{x-5}{3}=\frac{-12}{5-x}\)( ĐKXĐ : \(x\ne5\))
\(\Leftrightarrow\frac{x-5}{3}=\frac{-12}{-\left(x-5\right)}\)
\(\Leftrightarrow\frac{x-5}{3}=\frac{12}{x-5}\)
\(\Leftrightarrow\left(x-5\right)\left(x-5\right)=3\cdot12\)
\(\Leftrightarrow\left(x-5\right)^2=36\)
\(\Leftrightarrow\left(x-5\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=6\\x-5=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=11\\x=-1\end{cases}}\left(tmđk\right)\)
d) \(8x-\left|4x+\frac{3}{4}\right|=x+2\)
\(\Leftrightarrow8x-x-2=\left|4x+\frac{3}{4}\right|\)
\(\Leftrightarrow7x-2=\left|4x+\frac{3}{4}\right|\)(*)
\(\left|4x+\frac{3}{4}\right|\ge0\Leftrightarrow4x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{16}\)
Vậy ta xét hai trường hợp sau :
1. \(x\ge-\frac{3}{16}\)
(*) <=>\(7x-2=4x+\frac{3}{4}\)
\(\Leftrightarrow7x-4x=\frac{3}{4}+2\)
\(\Leftrightarrow3x=\frac{11}{4}\)
\(\Leftrightarrow x=\frac{11}{12}\)(tmđk)
2. \(x< -\frac{3}{16}\)
(*) <=> \(7x-2=-\left(4x+\frac{3}{4}\right)\)
\(\Leftrightarrow7x-2=-4x-\frac{3}{4}\)
\(\Leftrightarrow7x+4x=-\frac{3}{4}+2\)
\(\Leftrightarrow11x=\frac{5}{4}\)
\(\Leftrightarrow x=\frac{5}{44}\left(ktmđk\right)\)
Vậy x = 11/12
e) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)
\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2020}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{4040}\)
\(\Leftrightarrow x+1=4040\)
\(\Leftrightarrow x=4039\)
Bài giải
a) Số học sinh khối 7 là :
960 x 43,75% = 420 (em)
b) Số học sinh khối 6 và khối 8 là :
960 - 420 = 540 (em)
Số học sinh khối 6 là :
(540 + 140) : 2 = 340 (em)
Số học sinh khối 7 là :
540 - 340 = 200 (em)
Tỉ số phần trăm khọc sinh khối 8 với khối 6 là :
200 : 340 = 0,5882 = 58,82%
Đáp số : a) 420 em
b) 58,82 %
a) Số học sinh khối 7 là
960 x 43,75% = 420 em
b) Số học sinh khối 6 và khối 8 là
960 - 420 = 540 em
=>Số học sinh khối 6 là (540 + 140) : 2 = 340 em
=> Số học sinh khối 7 là 540 - 340 = 200 em
=> Tỉ số phần trăm khọc sinh khối 8 với khối 6 là : 200 : 340 = 0,5882 = 58.82%
a) Có cần chứng minh không ?
Mình chỉ biết 2 điểm thẳng hàng là B, K, N và C, K, P.
b) Xét tam giác AKC có:
KN là trung tuyến
CI là trung tuyến
CI cắt KN tại D
=> D là trọng tâm của tam giác AKC (đpcm) (1)
c) Từ (1) => \(DK=\frac{2}{3}KN\)
Mà \(D\in KN\)=> \(DK+DN=KN\)
Ngoặc ''}'' 2 điều
\(\Rightarrow\frac{2}{3}KN+DN=KN\)
\(\Rightarrow DN=KN-\frac{2}{3}KN=\frac{1}{3}KN\)
Xét tam giác ABC có:
AM là trung tuyến
BN là trung tuyến
AM cắt BN tại K
=> K là trọng tâm của tam giác ABC (2)
Từ (2) => \(KB=\frac{2}{3}BN\)
Mà \(K\in BN\)=> \(KB+KN=BN\)
Ngoặc ''}'' 2 điều
\(\Rightarrow\frac{2}{3}BN+KN=BN\)
\(\Rightarrow KN=BN-\frac{2}{3}BN=\frac{1}{3}BN\)
Mà \(DN=\frac{1}{3}KN\)(cmt)
\(\Rightarrow DN=\frac{1}{3}.\frac{1}{3}BN=\frac{1}{9}BN\)
Mà BN = 18cm (GT)
\(\Rightarrow DN=\frac{1}{9}.18=2cm\)(đpcm)
\(2^{x-2}.3^{y-3}.5^{z-1}=144=>2^{x-2}.3^{y-3}.5^{z-1}=2^4.3^2.5^0\)
\(\hept{\begin{cases}2^{x-2}=2^4\\3^{y-3}=3^2\\5^{z-1}=5^0\end{cases}}=>\hept{\begin{cases}x-2=4\\y-3=2\\z-1=0\end{cases}}=>\hept{\begin{cases}x=4+2\\y=2+3\\z=0+1\end{cases}}=>\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}\)
vậy \(\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}\)
Tách số 144 ra ta có :
\(144=2^4.3^2.1=2^4.3^2.5^0\)
Theo đề bài
\(\Rightarrow\hept{\begin{cases}x-2=4\\y-3=2\\z-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}}\)
Bp lên là ra :))
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{4}\)
Áp dụng Tc của dãy tỉ số bằng nhau , ta có :
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{z^2}{4}=\frac{x^2-y^2-z^2}{25-9-4}=\frac{48}{12}=4\)
\(\Rightarrow\hept{\begin{cases}x=20\\y=12\\z=8\end{cases}}\)
áp dụng tính chất dãy tỉ số bằng nhau ta được
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{z}{25}=\frac{y}{6}=\frac{z}{4}=\frac{x-y-z}{25-6-4}=\frac{48}{15}=3,2\)
x=5.3,2=16
y=3.3,2=9,6
z=2.3,2=6,4
vậy x=16 y=9,6 z=6,4
a) Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\hept{\begin{cases}a=ck\\b=dk\end{cases}}\)(*)
Khi đó \(\frac{a+2c}{a-c}=\frac{ck+2c}{ck-c}=\frac{c\left(k+2\right)}{c\left(k-1\right)}=\frac{k+2}{k-1}\)(1) ;
Lại có \(\frac{b+2d}{b-d}=\frac{dk+2d}{dk-d}=\frac{d\left(k+2\right)}{d\left(k-1\right)}=\frac{k+2}{k-1}\)(2)
Từ (1)(2) = > \(\frac{a+2c}{a-c}=\frac{b+2d}{b-d}\left(\text{đpcm}\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
\(\Rightarrow VT=\frac{a+2c}{a-c}=\frac{kb+2kd}{kb-kd}=\frac{k\left(b+2d\right)}{k\left(b-d\right)}=\frac{b+2d}{b-d}=VP\)
=> đpcm