Rút gọn
a) \(\frac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}\)
b) \(\frac{36\left(x-2\right)^3}{32-16x}\)
c) \(\frac{x^2+2x+1}{x+1}\)
d) \(\frac{x^2-2x+1}{x^2-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để P xác định \(\Leftrightarrow\hept{\begin{cases}2a-2\ne0\\2-2a^2\ne0\\a+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a^2\ne1\\a\ne-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a\ne-1vâ\ne1\\a\ne-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a\ne1\\a\ne-1\\a\ne2\end{cases}}\)
b) \(P=\left(\frac{a+1}{2a-2}+\frac{1}{2-2a^2}\right).\frac{2a+2}{a+2}\)
\(=\left[\frac{a+1}{2\left(a-1\right)}+\frac{1}{2\left(1-a\right)\left(1+a\right)}\right].\frac{2\left(a+1\right)}{a+2}\)
\(=\left[\frac{\left(a+1\right)^2}{2\left(a-1\right)\left(a+1\right)}-\frac{1}{2\left(a-1\right)\left(1+a\right)}\right].\frac{2\left(a+1\right)}{a+2}\)
\(=\frac{\left(a+1\right)^2-1}{2\left(a-1\right)\left(a+1\right)}.\frac{2\left(a+1\right)}{a+2}\)
\(=\frac{a\left(a+2\right)}{\left(a-1\right)\left(a+2\right)}\)
\(=\frac{a}{a-1}\)
c) \(\left|a\right|=3\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)
+) Với a=3 thỏa mãn \(\hept{\begin{cases}a\ne1\\a\ne-1\\a\ne2\end{cases}}\)nên thay a=3 vào P ta được:
( làm nốt)
TH kia tương tự
1) (x - 5)2 - (x + 3)(x - 3) = 14
=> x2 - 10x + 25 - x2 + 9 = 14
=> -10x + 34 = 14
=> -10x = 14 - 34
=> -10x = -20
=> x = 2
2) (x + 7)2 - 3x - 21 = 0
=> x2 + 14x + 49 - 3x - 21 = 0
=> x2 + 11x + 28 = 0
=> x2 + 4x + 7x + 28 = 0
=> x(x + 4) + 7(x + 4) = 0
=> (x + 7)(x + 4) = 0
=> \(\orbr{\begin{cases}x+7=0\\x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-7\\x=-4\end{cases}}\)
a
\(\left(x-5\right)^2-\left(x+3\right)\left(x-3\right)=14\)
\(\Leftrightarrow x^2-10x+25-x^2+9=14\)
\(\Leftrightarrow-10x=-20\)
\(\Leftrightarrow x=2\)
b
\(\left(x+7\right)^2-3x-21=0\)
\(\Leftrightarrow x^2+14x+49-3x-21=0\)
\(\Leftrightarrow x^2+11x+28=0\)
\(\Leftrightarrow\left(x^2+4x\right)+\left(7x+28\right)=0\)
\(\Leftrightarrow x\left(x+4\right)+7\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+7\right)=0\)
\(\Leftrightarrow x=-4;x=-7\)
\(=x^2-5x+6x-30\)
\(=x\left(x-5\right)+6\left(x-5\right)\)
\(=\left(x+6\right)\left(x-5\right)\)
\(x^2+x-30\)
\(=\left(x^2-5x\right)+\left(6x-30\right)\)
\(=x\left(x-5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x+6\right)\)
\(25-a^2+2ab-b^2\)
\(=25-\left(a^2-2ab+b^2\right)\)
\(=5^2-\left(a-b\right)^2\)
\(=\left(5-a+b\right)\left(5+a-b\right)\)
\(M=3x^2+6x+9\)
\(M=3\left(x^2+2x+3\right)\)
\(M=3\left(x^2+2x+1+2\right)\)
\(M=3\left[\left(x+1\right)^2+2\right]\)
\(M=3\left(x+1\right)^2+6\)
\(\left(x+1\right)^2\ge0\)
\(\Rightarrow3\left(x+1\right)^2\ge0\)
\(\Rightarrow3\left(x+1\right)^2+6\ge6\)
Vậy biểu thức M luôn luôn dương \(\forall x\)
\(M=3x^2+6x+9=3x^2+6x+3+6\)
\(=3\left(x^2+2x+1\right)+6\)\(=3\left(x+1\right)^2+6\)
Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow3\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow M\ge6\forall x\)\(\Rightarrow\)M luôn dương ( đpcm )
\(\frac{1}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}.\frac{k+2-k}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{2}.\left(\frac{1}{k\left(k+1\right)}-\frac{1}{\left(k+1\right)\left(k+2\right)}\right)\)
\(=\frac{1}{2}\left[\frac{k+1-k}{k\left(k+1\right)}-\frac{\left(k+2\right)-\left(k+1\right)}{\left(k+1\right)\left(k+2\right)}\right]\)
\(=\frac{1}{2}\left(\frac{1}{k}-\frac{1}{k+1}-\frac{1}{k+1}+\frac{1}{k+2}\right)\)
\(=\frac{1}{2}\left(\frac{1}{k}+\frac{1}{k+2}\right)-\frac{1}{k+1}\)
a, =x-z
b,=-9(2-x)^2/4
c,=x+1
d,=(x-1)/(x+1)
hok tốt
a) =\(\frac{x-z}{2}\)