tìm dư trong phép chia đa thức f(x) = x9 + x5 +1 cho đa thức g(x) = x3 - x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)=\frac{-2\left(x+3\right)}{x\left(1-3x\right)}.\frac{1-3x}{x\left(x+3\right)}\)
\(=\frac{-2}{x^2}\)
\(b)=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}\)
\(=x\left(x-3\right)\)
\(c)=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{1}{x\left(x+1\right)}\)
\(=\frac{\left(x+3\right).x}{x\left(x-1\right)\left(x+1\right)}-\frac{1.\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x\left(x+3\right)-\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+3}{x+1}\)
# Sắp ik ngủ nên làm vậy hoi, ko chắc phần kq câu b và c đâu nha
Ta có : \(\frac{x+2}{2021}+\frac{x+5}{2024}+\frac{x+3}{2022}=3\)
=> \(\left(\frac{x+2}{2021}-1\right)+\left(\frac{x+5}{2024}-1\right)+\left(\frac{x+3}{2022}-1\right)=3-1-1-1\)
\(\Rightarrow\frac{x-2019}{2021}+\frac{x-2019}{2024}+\frac{x-2019}{2022}=0\)
\(\Rightarrow\left(x-2019\right)\left(\frac{1}{2021}+\frac{1}{2024}+\frac{1}{2022}\right)=0\)
Vì \(\frac{1}{2021}+\frac{1}{2024}+\frac{1}{2022}\ne0\)
=> x - 2019 = 0
=> x = 2019
A = x . ( x + 1 ) . ( x2 + x - 4 )
A = ( x2 + x ) . [ ( x2 + x ) - 4 ]
A = ( x2 + x )2 - 4 . ( x2 + x ) + 4 - 4
A = ( x2 + x - 2 )2 - 4 \(\ge\)- 4
Dấu " = " xảy ra \(\Leftrightarrow\)x2 + x - 2 = 0
\(\Rightarrow\)x2 - x + 2x - 2 = 0
\(\Rightarrow\)x . ( x - 1 ) + 2 . ( x - 1 ) = 0
\(\Rightarrow\)( x - 1 )( x + 2 ) = 0
\(\Rightarrow\)x - 1 = 0 hoặc x + 2 = 0
\(\Rightarrow\)x = 1 hoặc x = - 2
Vậy : Min A = - 4 \(\Leftrightarrow\)x = 1 hoặc x = - 2
gợi ý x2+x = x(x+1)
=) đặt x2+x = M
=) A= M(M-4) = (M2 - 4M +4) -4
=) min..
Dấu "=" xảy ra khi M=2 hay x2+x = 2 =)x={-2;1}
chúc bn hc tốt
\(x\left(x-1\right)+y\left(y-3\right)+10\)
\(=x^2-x+y^2-3+10\)
\(=\left(x^2-2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2-2\cdot\frac{3}{2}y+\frac{9}{4}\right)+\frac{15}{2}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y-\frac{3}{2}\right)^2+\frac{15}{2}\ge\frac{15}{2}\)
x( x - 1 ) + y( y - 3 ) + 10
= x2 - x + y2 - 3y + 10
= x2 - x + y2 - 3y + 1/4 + 9/4 + 15/2
= ( x2 - x + 1/4 ) + ( y2 - 3y + 9/4 ) + 15/2
= ( x - 1/2 )2 + ( y - 3/2 )2 + 15/2 ≥ 15/2 > 0 ∀ x, y ( đpcm )
Đa thức 2x + 1 có bậc nhỏ hơn bậc của đa thức x3 - x nên ta không thể thực hiện phép chia nữa
Vậy đa thức f(x) = x9 + x5 +1 cho đa thức g(x) = x3 - x được x6 + x4 + 2x2 + 2 dư 2x + 1