Có bao nhiêu số tự nhiên có 3 chữ số abc sao cho a,b,c là độ dài 3 cạnh của 1 tam giác vuông ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hpt có nghiệm duy nhất khi \(m\ne3;m\ne4\)
Hpt có vô số nghiệm khi \(\hept{\begin{cases}m=3\\m=4\end{cases}}\)(vô lí). Vậy hệ không thể có vô số nghiệm
b) \(\hept{\begin{cases}3x+my=4\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(1-y\right)+my=4\\x=1-y\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-3\right)y=1\\x=1-y\end{cases}}\)
\(\cdot m=3\Rightarrow\hept{\begin{cases}0=1\\x=1-y\end{cases}}\)(vô lí)
\(\cdot m>3\Rightarrow\hept{\begin{cases}y=\frac{1}{m-3}>0\\x=1-\frac{1}{m-3}=\frac{m-4}{m-3}\end{cases}}\)
Để \(x< 0\)thì \(\frac{m-4}{m-3}< 0\). Mà \(m-3>0\Leftrightarrow m>3\)nên \(m-4< 0\Leftrightarrow m< 4\)
\(\Rightarrow3< m< 4\)
\(\cdot m< 3\Rightarrow\hept{\begin{cases}y=\frac{1}{m-3}< 0\\x=1-\frac{1}{m-3}=\frac{m-4}{m-3}\end{cases}}\)(loại do \(y< 0\))
Vậy \(3< m< 4\)thì thỏa ycbt
Vì \(x_1;x_2\) là 2 cạnh của tam giác vuông nên \(x_1;x_2>0\)hay pt có 2 nghiệm dương
Tức là \(\hept{\begin{cases}\Delta'\ge0\\S>0\\P>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m+1\right)^2-2m-1\ge0\\2\left(m+1\right)>0\\2m+1>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m^2\ge0\left(LuonĐung'\right)\\m>-1\\m>-\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow m>-\frac{1}{2}\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m+1\end{cases}}\)
Theo định lí Py-ta-go có : \(x_1^2+x_2^2=5\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5\)
\(\Leftrightarrow4m^2+8m+4-4m-2=5\)
\(\Leftrightarrow4m^2+4m-3=0\)
\(\Leftrightarrow\left(2m-1\right)\left(2m+3\right)=0\)
\(\Leftrightarrow m=\frac{1}{2}\left(Do\text{ }m>-\frac{1}{2}\right)\)
Vậy \(m=\frac{1}{2}\)
Nguyễn Linh Chi : Ơ ? Cô thiêu điều kiện nghiệm dương ạ ? Vì x1 và x2 là 2 cạnh của tam giác nên chúng > 0 => pt có 2 nghiệm dương ạ !
Áp dụng bất đẳng thức Bunhiacopxkia dạng phân thức ta có :
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+a+c+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)
Hay \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)(đpcm)
Bài Hiếu đúng rồi
Cách nữa dùng cô-si
\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge a\)
\(\frac{b^2}{c+a}+\frac{c+a}{4}\ge b\)
\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)
Cộng 3 bđt rồi chuyển vế ra đpcm
Gọi hai số đó là a và b.Theo đề bài,ta có phương trình:
\(\hept{\begin{cases}a+b=2019\\a=\frac{b}{2}\end{cases}}\).Thay \(a=\frac{b}{2}\Leftrightarrow2a=b\) ở phương trình hai vào pt đầu:
\(3a=2019\Leftrightarrow a=673\).Suy ra:\(b=2019-673=1346\)
Vậy ...
Độ dài 3 cạnh của 1 tam giác cân nhé , không phải vuông đâu : ) Tớ nhầm !
ib riêng tớ giải thích :))))