K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2019

<=> x2-3x = -y2+3y => 2 nghiệm : 3 và 0

24 tháng 2 2019

\(\Leftrightarrow\orbr{\begin{cases}x^2+6x+6=0\\\frac{\left(x+3\right)^2}{\left(x+4\right)^2}=0\end{cases}}\)

\(\text{+)(x+3)^2/(x+4)^2=0 suy ra (x+3)^2=0 suy ra: x+3=0 suy ra: x=-3}\)

\(+,x^2+6x+6=0\Rightarrow\left(x^2+6x+9\right)=3\Rightarrow\left(x+3\right)^2=3\)

\(\Leftrightarrow x+3=\pm\sqrt{3}\Leftrightarrow x=-\sqrt{3}-3.hoặc:x=\sqrt{3}-3\)

Vậy,,,,,,,,,,

24 tháng 2 2019

Lấy \(pt\left(1\right)-3.pt\left(2\right)\)được

\(11y^2+11y=22\)

\(\Leftrightarrow y^2+y-2=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-2\end{cases}}\)

Thế vô 1 trong 2 pt đầu sẽ tìm đc x

24 tháng 2 2019

\(\text{Ta có:}\)

\(\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\left(x,y,z>0\right)\ge\frac{3}{\sqrt[3]{xyz}}\ge\frac{3}{\frac{x+y+z}{3}}=\frac{9}{x+y+z}\)

\(\frac{y+z+5}{1+x}+\frac{z+x+5}{1+y}+\frac{x+y+5}{1+z}\)

\(=\frac{x+y+z+6}{1+x}+\frac{x+y+z+6}{1+y}+\frac{x+y+z+6}{1+z}-3\)

\(=\frac{24}{1+x}+\frac{24}{1+y}+\frac{24}{1+z}-3\ge\frac{51}{7}\Leftrightarrow\frac{24}{1+x}+\frac{24}{1+y}+\frac{24}{1+z}\ge\frac{72}{7}\)

\(24\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\ge24\left(\frac{9}{x+1+y+1+z+1}\right)\)

\(=24\left(\frac{9}{21}\right)=\frac{24.9}{21}=\frac{8.9}{7}=\frac{72}{7}\)

Bài toán đã được chứng minh

24 tháng 2 2019

\(\text{Thêm dấu "=" xảy ra khi: x=y=z=6 nha! =((}\)

11 tháng 8 2020

Ta còn có:

Bất đẳng thức \(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{1}{k\left(a^2+b^2+c^2\right)+\left(\frac{2}{9}-k\right)\left(ab+bc+ca\right)}\)

đúng với mọi a,b,c,k không âm (k = \(\text{constant}\))