K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2019

\(\sqrt{-3x^3+5x+14}+\sqrt{-5x^3+6x+28}=\left(4-2x-x^2\right)\sqrt{2-x}\) (ĐKXĐ: \(x\in R,x\le2\))

\(\Leftrightarrow\sqrt{\left(2-x\right)\left(3x^2+6x+7\right)}+\sqrt{\left(2-x\right)\left(5x^2+10x+14\right)}-\left(4-2x-x^2\right)\sqrt{2-x}=0\)

\(\Leftrightarrow\sqrt{2-x}\left(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}-4+2x+x^2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\left(1\right)\end{cases}}\)

Pt \(\left(1\right)\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-\left(x+1\right)^2+5\left(2\right)\)

Ta có: \(\left(x+1\right)^2\ge0\Rightarrow\sqrt{2\left(x+1\right)^2+4}\ge\sqrt{4}=2\)

Tương tự: \(\sqrt{5\left(x+1\right)^2+9}\ge3\). Từ đó: \(VT_{\left(2\right)}\)\(\ge2+3=5\)

Mà \(VP_{\left(2\right)}=-\left(x+1\right)^2+5\le5\) nên dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)(tm)

Vậy tập nghiệm của pt cho là \(S=\left\{2;-1\right\}.\)

25 tháng 2 2019

 Khoa Bùi Phạm (Em làm thử)

\(\hept{\begin{cases}\left|x\right|+x+\left|y\right|+y=2000\left(1\right)\\\left|x\right|-x+\left|y\right|-y=k\left(2\right)\end{cases}}\)

Lấy (1)-(2) \(\Rightarrow2x+2y=2000-k\)

                \(\Rightarrow2\left(x+y\right)=2000-k\)

Vì hệ phương trình có đúng hai no phân biệt (x;y)=(a;b) và (x;y)=(c;d)

Nên \(2\left(x+y\right)=a+b+c+d\)

Vậy \(a+b+c+d=2000-k\)

P/s: k chắc lắm -.- . Nếu có lỗi sai mong thầy/cô và các bn chỉ ra giúp em. Cảm ơn!

25 tháng 2 2019

                            Giải

Xét tứ giác ABCD có AB cắt CD tại F. E là giao điểm 2 đường chéo tứ giác. G,H thứ tự là trung điểm AC,BD

Ta cần chứng minh: \(S_{FGH}=\frac{1}{2}S_{ABCD}\)

               \(S_{FGH}=S_{FAD}-S_{FAG}-S_{FDH}-S_{AGD}-S_{DGH}\)

              \(=S_{AFD}-\frac{1}{2}\left(S_{FAC}+S_{FBD}\right)-\frac{1}{2}S_{ACD}-\frac{1}{2}S_{DGB}\)

\(=S_{ACD}+S_{ABC}+S_{FBC}-\frac{1}{2}\left(S_{ABC}+S_{FBC}+S_{DBC}+S_{FBC}\right)-\frac{1}{2}S_{ACD}\)

\(-\frac{1}{2}\left(S_{ACD}+S_{ABC}-S_{ADG}-S_{ABG}-S_{DBC}\right)\)

\(=\frac{1}{2}\left(S_{ADG}+S_{ABG}\right)=\frac{1}{2}.\frac{1}{2}\left(S_{ACD}+S_{ABC}\right)=\frac{1}{4}S_{ABCD}\left(đpcm\right)\)

27 tháng 2 2019

Giải

Xét tứ giác ABCD có AB cắt CD tại F. E là giao điểm 2 đường chéo tứ giác. G,H thứ tự là trung điểm AC,BD

Ta cần chứng minh: SFGH=12 SABCD

               SFGH=SFAD−SFAG−SFDH−SAGD−SDGH

              =SAFD−12 (SFAC+SFBD)−12 SACD−12 SDGB

=SACD+SABC+SFBC−12 (SABC+SFBC+SDBC+SFBC)−12 SACD

−12 (SACD+SABC−SADG−SABG−SDBC)

=12 (SADG+SABG)=12 .12 (SACD+SABC)=14 SABCD(đpcm)

25 tháng 2 2019

H F B E A C D K O

a) Gọi O là giao điểm của  AC và BD

=> OA=OB=OC=OD ( ABCD là hình chữ nhật)

=> O LÀ tâm đường tròn

=> AC là đường kính

=> \(\widehat{AEC}=90^o\),\(\widehat{ABC}=90^o\)( Chắn cung AC)

=> \(\widehat{FEH}+\widehat{FBH}=180^o\)

=> Tứ giác EFHB nội tiếp

b)Từ a =>  \(\widehat{FHA}=\widehat{EBA}\)(1)

\(\widehat{EBA}=\widehat{EDA}\)( cùng chắn cung AE)(2)

Từ (1), (2)

=> điều phải chứng minh

c) Tam giác tiếp xúc với đường tròn ?

28 tháng 2 2019

dang can cau c :D