Tìm x thỏa mãn:
\(\frac{1}{x-3}+2=\frac{5}{x-1}+x\)
ĐKXĐ: x \(\ne3\); x \(\ne1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Định dùng Abel mà quên là ko có điều kiện vs lại thường dùng cho BĐT:v
Đặt \(\frac{x}{a}=m;\frac{y}{b}=n\)
Khi đó \(m+n=1;mn=-2\).Ta cần chứng minh:\(m^3+n^3=7\).Thật vậy !
Ta có:
\(m^3+n^3=\left(m+n\right)^3-3mn\left(m+n\right)=1^3-3\cdot\left(-2\right)\cdot1=1+6=7\)
=> đpcm
a
\(ĐKXĐ:x\ne3;x\ne-3;x\ne0\)
b
\(A=\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
\(=\left[\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right]:\left[\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right]\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{3x\left(x+3\right)}{-\left(9-3x+x^2\right)}=\frac{-3}{x-3}\)
c
Với \(x=4\Rightarrow A=-3\)
d
Để A nguyên thì \(\frac{3}{x-3}\) nguyên
\(\Rightarrow3⋮x-3\)
Làm nốt.
\(\frac{x^3+125}{x^2-3x-40}=\frac{x^3+5^3}{\left(x^2+5x\right)-\left(8x+40\right)}=\frac{\left(x+5\right)\left(x^2-5x+25\right)}{x\left(x+5\right)-8\left(x+5\right)}\)
\(=\frac{\left(x+5\right)\left(x^2-5x+25\right)}{\left(x+5\right)\left(x-8\right)}=\frac{x^2-5x+25}{x-8}\)