Tìm hai số biết hiểu của chúng bằng 1 và tổng các bình phương của chúng bằng 313
mk cần gấp các bn giúp t nhé.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk: -1<=x<0 (*)v x>=1(**)
nhân hai vế cho căn(X-1/X) -căn(1-1/X) (1) ((1) khác 0 nha bạn,vì x=1 không là nghiệm của phương trình, nên biểu thức 1 khác 0), được cái này nè:
x[căn(X-1/X) - căn(1-1/X)]=x-1
xét theo hai điều kiện để tách căn:
@đk *: khi đó x-1 và x đều nhỏ hơn 0:
xcan(1-x)[(can(x+1)/can(-x)-1/can(-x)+...
theo đk x khác 0, cũng theo * thì 1-x khác 0, chỉ còn trong [..](cũng sẽ khác không), bi h cho trong [..] băng 0 (theo trình tự giải thôi): căn(x+1)+can(x^2-x)-1=0 <=>
(bình phg hai vế khi chuyển số một qua phải)
x^2+1+2can(x+1)căn(x^2-x)=1, triệt tiêu số 1 thấy vế trái hoàn toàn lớn hơn không, nên không có nghiệm
@đk (**) tương tự thế, rùi vô nghiệm luôn!
bạn koi lập luận đúng chưa nha!
chúc bạn học tốt!
Gọi \(S\),\(P\)lần lượt là diện tích và chu vi của tam giác ABC
a,b,c lần lượt là các cạnh của tam giác ABC
Ta có:\(\frac{r}{2}=\frac{S}{P}\Leftrightarrow\frac{P}{2}=\frac{S}{r}\)
\(\frac{S}{x}+\frac{S}{y}+\frac{S}{z}=\frac{a}{2}+\frac{b}{2}+\frac{c}{2}=\frac{P}{2}\)
\(\Rightarrow\frac{S}{x}+\frac{S}{y}+\frac{S}{z}=\frac{S}{r}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{r}\)
a,b,
dễ mà hehe:
x2+y2+xy+1=4y (1) |
(x2+1)(x+y−2)=y (2) |
x^2+y^2+xy+1=4y:
=> x^2+1=4y-y^2-xy
=> x^2+1=y(4-y-x)
=> thay gt x^2+1 vào cái pt (2)
=> y(4-y-x)(x+y-2)=y
=> -y(x+y-4)(x+y-2)=y
=> (x+y-4)(x+y-2)=-1
Đặt x+y-3=t
=> x+y-4=t-1 và x+y-2=t+1
=> t^2-1=-1
=> t^2=0
=> t=0
=> x+y-3=0
=> x+y=3
=> x=y-3
Giai pt (1):
(x+y)^2-2xy+xy+1=4y
=> 10-xy=4y
=> 10-(3-y)y-4y=0
=> 10-3y+y^2-4y=0
=> y^2-7y+10=0
=> 4y^2-28y+40=0
=> (2y-7)^2=9
=> 2y-7=3 hoặc -3
Tự tìm y và tìm nốt x qua x+y=3 nhá
Giúp đến thế thôi !!!
\(\hept{\begin{cases}x^2+1+y\left(x+y\right)=4y\\\left(x^2+1\right)\left(x+y-2\right)=y\end{cases}}\)
Với y=0 hệ phương trình trở thành \(\hept{\begin{cases}x^2+1=0\\\left(x^2+1\right)\left(x-2\right)=0\end{cases}}\)(vô nghiệm)
Với y\(\ne\)0 hệ trở thành \(\hept{\begin{cases}\frac{x^2+1}{y}+\left(x+y\right)=4\\\left(\frac{x^2+1}{y}\right)\left(x+y-2\right)=1\end{cases}}\)
Đặt a=\(\frac{x^2+1}{y},b=x+y\)thay vào hệ (1) ta được \(\hept{\begin{cases}a+b=4\\a\left(b-2\right)=1\end{cases}}\)
Giải ta được a=1; b=3
Với a=1; b=3 => \(\hept{\begin{cases}\frac{x^2+1}{y}=1\\x+y=3\end{cases}}\)
Giải được nghiệm của hệ (x;y)=(1;2) và (c;y)=(-2;5)
KL:
thô ng báo : ai giải được cho tôi bài hệ phương trình này thì tôi k 3 cái cho người đó trong 3 ngày ok , giử lời hứa ...
ĐKXĐ;: x khác -y ; y khác 1
Đặt \(\hept{\begin{cases}\frac{1}{x+y}=a\\\frac{1}{y-1}=b\end{cases}}\left(a;b\ne0\right)\)
Ta thu được hệ \(\hept{\begin{cases}4a+b=5\\a-2b=-1\end{cases}}\)
Giải hệ này dễ quá rồi -_-