cho góc xMy và đường tròn (O) tiếp xúc với Mx và My tại A,B. Qua A vẽ đường thẳng song song với My cắt (O) tại điểm thứ 2 C,đoạn MC cắt (O) tại điểm thứ 2 D, tia AD cắt My tại K, chứng minh: K là trung điểm của MB
trình bày ra
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a] CMR với x>1,ta có x/căn bậc hai của x-1>/2
b Cho a>1,b>1.Tìm GTNN của biểu thức a2/b-1 cộng b2/a-1
Áp dụng bđt Cô-si có \(\Sigma\left(\frac{x^2}{y+1}+\frac{y+1}{4}\right)\ge\Sigma2\sqrt{\frac{x^2}{y+1}.\frac{y+1}{4}}=\Sigma x\)
\(\Rightarrow\Sigma\frac{x^2}{y+1}+\Sigma\frac{y+1}{4}\ge\Sigma x\)
\(\Rightarrow\Sigma\frac{x^2}{y+1}\ge\frac{3\Sigma x}{4}-\frac{3}{4}\)
Theo bđt Cô-si \(\Sigma x\ge3\sqrt[3]{\Pi x}=3\)
\(\Rightarrow\Sigma\frac{x^2}{y+1}\ge\frac{3\Sigma x}{4}-\frac{3}{4}\ge\frac{3.3}{4}-\frac{3}{4}=\frac{6}{4}=\frac{3}{2}\)
Dấu "='' <=> x = y = z = 1
Ta có \(P=\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}\) \(\Rightarrow P+\frac{x+y+z+3}{4}=P+\frac{X+1}{4}+\frac{Y+1}{4}+\frac{Z+1}{4}\)
= \(\left(\frac{x^2}{y+1}+\frac{y+1}{4}\right)+\left(\frac{y^2}{z+1}+\frac{z+1}{4}\right)+\left(\frac{z^2}{x+1}+\frac{x+1}{4}\right)\)
Do các số trong ngoặc đều dương nên áp dụng BĐT Cô - Si, ta có :
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge2\sqrt{\frac{x^2}{y+1}.\frac{y+1}{4}}=x\)
Tương tự suy ra \(\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
Vậy P + \(\frac{x+y+z+3}{4}\ge x+y+z\Rightarrow P\ge\frac{3x+3y+3z-3}{4}\left(1\right)\)
Ta có x, y, z > 0 nên theo BĐT Cô - Si, ta có : \(x+y+z\ge3\sqrt[3]{xyz}=3\left(2\right)\)
Từ (1), (2); ta có P \(\ge\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)
Ta có : \(\Delta'=m^2+m+3=\left(m+\frac{1}{2}\right)^2+\frac{11}{4}>0\forall m\)
Nên pt đã cho luôn có 2 nghiệm phân biệt
Theo hệ thức Vi-et có \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m-3\end{cases}}\)
Ta có : \(\left|x_1\right|=\left|x_2\right|\)
\(\Rightarrow\orbr{\begin{cases}x_1=x_2\\x_1=-x_2\end{cases}}\)
Đến đây thế vô Vi-ét rồi tìm đc m , làm nốt