cho hình vuông ABCD có 2018 đường thẳng cùng có tính chất chia hình vuông này thành hai tứ giác có tỉ số diện tích bằng 2/3. Chứng minh rằng có ít nhất 505 đường thẳng trong 2018 đường thẳng trên đồng quy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tl :
Cho anh hỏi Cạnh bên dài 8 cm
thì cạnh bên là cạnh nào
k bt đc
vì tam giác cân nên là cạnh bên bắng nhau thế thì cạnh bên nào bằng tám mà chả dc
a) \(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)
\(A=20x^3-10x^2+5x-20x^3+10x^2+4x\)
\(A=9x\)
Thay x = 15 vào, ta có:
\(A=9.15=135\)
b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)\)
\(B=5x^2-20xy-4y^2+20xy\)
\(B=5x^2-4y\)
Thay \(x=-\frac{1}{5};y=-\frac{1}{2}\) vào, ta có:
\(B=5.\left(-\frac{1}{5}\right)^2-4.\left(-\frac{1}{2}\right)=\frac{11}{5}\)
c) \(C=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)-5y^2\left(x^2-xy\right)\)
\(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)
\(C=9x^2y^2-xy^3-8x^3\)
Thay \(x=\frac{1}{2};y=2\) vào, ta có:
\(C=9.\left(\frac{1}{2}\right)^2.2^2-\frac{1}{2}.2^3-8.\left(\frac{1}{2}\right)^3=4\)
d) \(D=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)
\(D=6x^2-3x+10x-5+12x^2+8x-3x-2\)
\(D=18x^2+12x-7\)
Ta có: \(\left|2\right|=\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)
+) Với x = -2
\(D=18.\left(-2\right)^2+12.\left(-2\right)-7=41\)
+) Với x = 2
\(D=18.2^2+12.2-7=89\)
\(\Leftrightarrow\left(x-3\right)^3-\left(x-3\right)^3+9\left(x^2+1\right)=63\)
\(\Leftrightarrow9\left(x^2+1\right)=63\)
\(\Leftrightarrow x^2+1=7\)
\(\Leftrightarrow x^2=6\)
\(\Leftrightarrow x=\pm\sqrt{6}\)
ta có: ( x –3 )³ – ( x – 3) . ( x² + 3x + 9) + 9 (x² + 1 ) = 63
\(\Leftrightarrow x^3-3.x^2.3+3.x.3^2-3^3+3.\left(x^2+3x+9\right)-x\left(x^2+3x+9\right)+9x^2+\)\(9=63\)
\(\Leftrightarrow\left(x^3-x^3\right)-\left(9x^2-9x^2\right)+27x-\left(27-27\right)-\left(9x-9x\right)-\left(3x^2-3x^2\right)\)\(+9=63\)
\(\Leftrightarrow27x+9=63\)
\(\Leftrightarrow3x+1=7\)
\(\Leftrightarrow3x=6\)
\(\Leftrightarrow x=2\)
vậy: x=2
a) \(ĐKXĐ:x\ne\pm1\)
\(A=\frac{x^3-2x^2+x}{x^2-1}\)
\(\Leftrightarrow A=\frac{x\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\)
\(\Leftrightarrow A=\frac{x^2-x}{x+1}\)
b) Để A có giá trị nguyên
\(\Leftrightarrow\frac{x^2-x}{x+1}\inℤ\)
\(\Leftrightarrow x^2-x⋮x+1\)
\(\Leftrightarrow x^2-x-2+2⋮x+1\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)+2⋮x+1\)
\(\Leftrightarrow2⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;-3;1\right\}\)
Ta sẽ loại các giá trị ktm
\(\Leftrightarrow x\in\left\{-2;0;-3\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;0;-3\right\}\)
Từ giả thiết suy ra \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)(vì a,b,c khác 0)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
\(\Rightarrow M=1\)