Tìm hai phân số có tử bằng 9, biết rằng giá trị của mỗi phân số đó lớn hơn \(\frac{-11}{13}\)và nhỏ hơn \(\frac{-11}{15}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\)(*)
Mặt khác: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}=2\)(**)
Chú ý ta có được các kết quả trên nhờ vào bổ đề: \(\frac{x}{y}< \frac{x+m}{y+m}\left(x,y,m\inℕ^∗,x< y\right)\)
Từ (*) và (**) suy ra đpcm.

a, \(\left|x-\frac{2}{3}\right|=\frac{1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=\frac{1}{2}\\x-\frac{2}{3}=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}+\frac{2}{3}\\x=\frac{2}{3}-\frac{1}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{6}\\x=\frac{1}{6}\end{cases}}}\)
b, \(\left|x+\frac{7}{20}\right|=\frac{3}{15}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{7}{20}=\frac{1}{5}\\x+\frac{7}{20}=-\frac{1}{5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}-\frac{7}{20}\\x=-\frac{1}{5}-\frac{7}{20}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-3}{20}\\x=\frac{-11}{20}\end{cases}}}\)
c, \(\left|3x+2\right|=\left|7x-4\right|\)
\(\Leftrightarrow\orbr{\begin{cases}3x+2=7-4x\\3x+2=4x-7\end{cases}\Leftrightarrow\orbr{\begin{cases}7x=5\\x=9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{7}\\x=9\end{cases}}}\)
d, \(\left|5-2x\right|=\left|2x-5\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5-2x=2x-5\\5-2x=5-2x\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\0x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x\in Q\end{cases}}}\)
=> Có vô số x thỏa mãn \(\left|5-2x\right|=\left|2x-5\right|\)
e, \(\left|-5-6x\right|=\left|-x-5\right|\)
\(\Leftrightarrow\orbr{\begin{cases}-5-6x=-x-5\\-5-6x=x+5\end{cases}\Leftrightarrow\orbr{\begin{cases}-5x=0\\-7x=10\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-\frac{10}{7}\end{cases}}}\)
f, \(\left|-x+5\right|=\left|12-3x\right|\) đúng ko ???
\(\Leftrightarrow\orbr{\begin{cases}-x-5=12-3x\\-x+5=3x-12\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=7\\-4x=17\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=\frac{17}{4}\end{cases}}}\)

\(A=\frac{x^2+3x-7}{x+3}\)
\(A=\frac{x^2+3x}{x+3}-\frac{7}{x+3}\)
\(A=\frac{x\left(x+3\right)}{x+3}-\frac{7}{x+3}\)
\(A=x-\frac{7}{x+3}\left(x\ne3\right)\)
A nguyên \(\Leftrightarrow7⋮x+3\)
\(x+3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
x + 3 = - 7 hoặc x + 3 = -1 hoặc x + 3 = 1 hoặc x + 3 = 7
x = -10 hoặc x = -4 hoặc x = -2 hoặc x = 4
A=\(\frac{x^2+3x-7}{x+3}\)= \(\frac{x\left(x+3\right)-7}{x+3}\)
Để A thuộc Z => x(x+3)-7 chia hết cho (x+3)
Mà x(x+3) chia hết cho (x+3).
=> 7 chia hết cho (x+3)
=> (x+3) là ước của 7.
Mà Ư(7) ={1;7;-1;-7)
=> Ta có bảng sau:
x+3 | 7 | 1 | -7 | -1 |
x | 4 | -2 | -10 | -4 |
NX | Chọn (x thuộc Z) | Chọn | Chọn | Chọn |
=> Vậy x có những giá trị sau: 4,-2,-10,-4

a/ ( - 3,9 ) + [ ( - 5,2 ) + ( 3,9 ) b/ 51,4 + 8,6 + ( -17 ) c/ (-7,6) + 5,5 - ( 2,5 - 7,6 )
= ( -3,9 ) + ( - 5,2 ) + ( 3,9 ) = 60 + (-17) = (- 7,6 ) + 5,5 + (- 2,5 ) + 7,6
= [ ( -3,9 ) + 3,9 ] + ( - 5,2 ) = 43 = [ (- 7,6 ) + 7,6] + [ 5,5 + ( - 2,5 ) ]
= 0 + ( - 5,2 )
= ( - 5,2 ) = 0 + 3 => = 3
Gọi hai p/s cần tìm là \(\frac{9}{a}\)( có dạng a thuộc x )
Ta có : \(-\frac{11}{13}< \frac{9}{a}< -\frac{11}{15}\)
\(\Leftrightarrow\frac{99}{-117}< \frac{99}{11a}< \frac{99}{-135}\)
\(\Leftrightarrow-117>11a>-135\)
\(\Leftrightarrow-10,6363636>a>-12,2727273\)
\(\Leftrightarrow a\in\left\{-11;-12\right\}\)
Vậy hai p/s cần tìm là \(-\frac{9}{11};-\frac{9}{12}\)