K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Tui nghĩ đề bị thiếu rồi. Phải là \(\Delta ABC\)có \(AB=AC\) mới đúng.

A B C D H

Trên nửa m.phẳng bờ \(BC\)chứ \(A\) vẽ tia \(Bx\)sao cho \(\widehat{CBx}=20^0\)

Gọi \(D\)là giao điểm của \(Bx\)và \(AC\)\(H\)là hình chiếu của \(A\)trên \(Bx\)

Theo đề ta có: \(AB=AC\Rightarrow\Delta ABC\)cân tại \(A\) và \(\widehat{A}=20^0\Rightarrow\widehat{ABC}=\widehat{ACB}=80^0\)

Lại có: \(\widehat{ABH}+\widehat{HBC}=\widehat{ABC}=80^0\)

Và: \(\widehat{CBx}=20^0\Rightarrow\widehat{ABH}=60^0\Rightarrow BH=\frac{b}{2};AH=\frac{\sqrt{3}b}{2}\)

\(\Rightarrow\Delta CBD\)cân tại \(B\Rightarrow BD=BC=a\)

Lại có: \(\Delta CBD~\Delta CAB\left(g-g\right)\Rightarrow\frac{BD}{AB}=\frac{CD}{BC}\Rightarrow CD=\frac{a^2}{b}\)

Ta có: \(AD=AC-CD=b-\frac{a^2}{b};DH=BH-BD=\frac{b}{2}-a\)

Áp dụng định lí Pitago trong \(\Delta ADH\)vuông tại \(H\) có:

\(\Rightarrow AD^2=AH^2+DH^2\)

Vì vậy: \(\left(b-\frac{a^2}{b}\right)^2=\left(\frac{\sqrt{3}b}{2}\right)^2+\left(\frac{b}{2}-a\right)^2\)

\(\Leftrightarrow b^2-2a^2+\frac{a^4}{b^2}=\frac{3b^2}{4}+\frac{b^2}{4}-ab+a^2\)

\(\Leftrightarrow b^2-2a^2+\frac{a^4}{b^2}=b^2-ab+a^2\)

\(\Leftrightarrow\frac{a^4}{b^2}+ab=3a^2\)

\(\Leftrightarrow a^3+b^3=3ab^2\left(đpcm\right)\)

6 tháng 2 2020

ồ xin lỗi, đánh thiếu đề

THANKS!

6 tháng 2 2020

a) \(\left(a+b\right)^3-a^3-b^3\)

\(=a^3+3a^2b+3ab^2+b^3-a^3-b^3\)

\(=3a^2b+3ab^2\)

\(=3ab\left(a+b\right)\)

b) \(\left(x+y\right)^4+x^4+y^4\)

\(=x^4+4x^3y+6x^2y^2+4xy^3+y^4+x^4+y^4\)

\(=2x^4+2y^4+4x^2y^2+4x^3y+4xy^3+2x^2y^2\)

\(=2\left(x^4+2x^2y^2+y^4\right)+4xy\left(x^2+y^2\right)+2x^2y^2\)

\(=2\left[\left(x^2+y^2\right)^2+2xy\left(x^2+y^2\right)+x^2y^2\right]\)

\(=2\left(x^2+y^2+xy\right)^2\)

6 tháng 2 2020

Đồng bậc

\(a^3+b^3\le a^4+b^4\)

\(\Leftrightarrow\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)

\(\Leftrightarrow a^4+b^4+ab^3+a^3b\le2a^4+2b^4\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) ( true )

6 tháng 2 2020

\(b, 8(a^3+b^3+c^3)≥(a+b)^3 + (b+c)^3 + (c+a)^3 \) với \(a,b,c>0\)

Ta biến đổi thành: \(4\left(a^3+b^3\right)-\left(a+b\right)^3+4\left(b^3+c^3\right)-\left(b+c\right)^3+4\left(c^3+a^3\right)-\left(c+a\right)^3\ge0\)

Xét: \(4\left(a^3+b^3\right)-\left(a+b\right)^3\)

\(=\left(a+b\right)\left[4\left(a^2-ab+b^2\right)-\left(a+b\right)^2\right]\)

\(=3\left(a+b\right)\left(a-b\right)^2\ge0\)

Tương tự như trên với:  \(4\left(b^3+c^3\right)-\left(b+c\right)^3\) và \(4\left(c^3+a^3\right)-\left(c+a\right)^3\)

\(\RightarrowĐpcm\)(Viết cái đề ra ý)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c\)

6 tháng 2 2020

y^3 - y^2 - 21y + 45 = 0

<=> y^3 - 3y^2 + 2y^2 - 6y - 15y + 45 = 0

<=> y^2(y - 3) + 2y(y - 3) - 15(y - 3) = 0

<=> (y^2 + 2y - 15)(y-3) = 0

<=> (y^2 + 5y - 3y - 15)(y - 3) = 0

<=> [y(y+5) - 3(y-5)](y-3) = 0

<=> (y-3)(y+5)(y-3) = 0

<=> y- 3 = 0 hoặc y + 5 = 0

<=> y = 3 hoặc y = -5

6 tháng 2 2020

1)3(x^3+1) + 2x(x+1)=8

suy ra : 3(x+1)(x^2 +x+1) + 2x(x+1) =8

suy ra : (x+1) ( 3( x^2+x+1)  +2x) -8 =0

suy ra : (x+1) ( 3x^2 +3x+3+2x) -8 =0

mk ko bt nữa

  

5 tháng 2 2020

A B C D M N I

Gọi \(I\) là giao điểm điểm \(BD\)và \(AC\).

Xét \(\Delta ABD\)có tia p.giác \(AM\)có: \(\frac{AB}{AD}=\frac{BM}{DM}\)

Tương tự ta có: \(\frac{CD}{AD}=\frac{CN}{AN}\)

Mà: \(AB=CD\Rightarrow\frac{BM}{DM}=\frac{CN}{AN}\)

Từ trên ta suy ra: \(\frac{BM}{DM}+1=\frac{CN}{AN}+1\Leftrightarrow\frac{BD}{DM}=\frac{AC}{AN}\Leftrightarrow\frac{AI}{DM}=\frac{AI}{AN}\)

\(\Rightarrow MN//AD\left(đpcm\right)\)