K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

\(ab=\sqrt{2}\Leftrightarrow a\sqrt{2b}=2\Leftrightarrow a^3\left(\sqrt{2b}\right)^3=8\)

 Đặt \(x=a^3\)và  \(y=\left(\sqrt{2b}\right)^3\Rightarrow xy=8\)và \(x+y=9\)

=> x;y là 2 nghiệm của ptrình \(x^2-9x+8=0\)( Viét đảo)

 giải ra được \(\left(a;b\right)=\left(1;\sqrt{2}\right)\)và \(\left(a;b\right)=\left(2;\frac{\sqrt{2}}{2}\right)\)

17 tháng 7 2020

Đề lạ đời, sao lại tìm các số thực dương a,b,c, đáng lẽ phải là cho các số thực dương a,b,c chứ. Mà đã thực dương rồi sao \(c\ge0\)(c = 0 đâu có nghĩa là c dương)

Mình nghĩ đề đúng phải là: Cho các số thực dương a, b, c thỏa mãn \(c\ge a\)(vì sau khi suy nghĩ và viết lại BĐT thì khi ta nhân hai phân số \(\frac{b}{a}.\frac{c}{b}=\frac{c}{a}\ge1\), cũng có thể đấy chứ) . CMR:...

17 tháng 7 2020

Bất đẳng thức đã cho tương đương với \(\frac{1}{\left(1+\frac{b}{a}\right)^2}+\frac{1}{\left(1+\frac{c}{b}\right)^2}+\frac{4}{\left(1+\frac{a}{c}\right)^2}\ge\frac{3}{2}\)

Đặt \(\frac{b}{a}=x,\frac{c}{b}=y\left(x,y>0\right)\). Khi đó \(\frac{a}{c}=\frac{1}{xy}\). Bất đẳng thức cần chứng minh trở thành \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}+\frac{4x^2y^2}{\left(1+xy\right)^2}\ge\frac{3}{2}\)

Trước hết ta chứng minh bất đẳng thức \(\frac{1}{\left(1+x\right)^2}+\frac{1}{\left(1+y\right)^2}\ge\frac{1}{xy+1}\)(*) với x, y là các số dương 

Thật vậy: (*)\(\Leftrightarrow\left(1-xy\right)^2+xy\left(x-y\right)^2\ge0\)*đúng*

Ta quy bài toán về chứng minh \(\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}\ge\frac{3}{2}\)

Đặt \(P=\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}\). Áp dụng bất đẳng thức Cauchy ta được:\(\frac{4x^2y^2}{\left(1+xy\right)^2}+1\ge\frac{4xy}{1+xy}\)

Khi đó \(P=\frac{1}{xy+1}+\frac{4x^2y^2}{\left(1+xy\right)^2}+1-1\ge\frac{1}{xy+1}+\frac{4xy}{1+xy}-1\)\(=\frac{3xy}{1+xy}=\frac{3}{\frac{1}{xy}+1}\)(1)

Từ giả thiết \(c\ge a\)suy ra \(\frac{a}{c}\le1\)hay \(\frac{1}{xy}\le1\)(2)

Từ (1) và (2) suy ra \(\frac{3}{\frac{1}{xy}+1}\ge\frac{3}{1+1}=\frac{3}{2}\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c

7 tháng 5 2019

ĐKXĐ \(4\ge x\ge-4\)

Đặt \(\sqrt{x-4}=a,\sqrt{x+4}=b\left(a,b\ge0\right)\)

Khi đó \(-a^2+4b^2=3x+20\)

Phương trình tương đương

\(-a^2+4b^2+7a=14b\)

,<=>\(\left(a+2b\right)\left(a-2b\right)-7\left(a-2b\right)=0\).

<=> \(\left(a-2b\right)\left(a+2b-7\right)=0\)

<=> \(\orbr{\begin{cases}a=2b\\a+2b=7\end{cases}}\)

+, \(a=2b\)

Mà \(a^2-b^2=-8\)

=> \(3b^2=-8\left(loại\right)\)

+, \(a+2b=7\)

Mà \(a^2-b^2=-8\)

=>\(\hept{\begin{cases}a=1\\b=3\end{cases}}\)

Khi đó x=5

Vậy \(S=\left\{5\right\}\)

21 tháng 5 2020

Xét pt \(3x+7\sqrt{x-4}=14\sqrt{x+4}-20\)

Với đkxđ x>=4, pt tương đương với

\(3x+20-7\left(2\sqrt{x+4}-\sqrt{x-4}\right)=0\)

\(\Leftrightarrow3x+20-7\cdot\frac{\left(2\sqrt{x+4}\right)^2-\left(\sqrt{x-4}\right)^2}{2\sqrt{x+4}+\sqrt{x-4}}=0\)

\(\Leftrightarrow\left(3x+20\right)\left(1-\frac{7}{2\sqrt{x+4}+\sqrt{x-4}}\right)=0\)

\(\Leftrightarrow2\sqrt{x+4}+\sqrt{x-4}=7\left(x\ge4\right)\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{2}{\sqrt{x+4}+3}+\frac{1}{\sqrt{x-4}+1}\right)=0\)

=> x=5 (tmđk)

Vậy x=5 là nghiệm của pt

6 tháng 5 2019

tính ra \(\Delta\)=(m+1)2+3>0  (vì (m+1)2\(\ge\)0)

theo hệ thức vi-et ,có 

S=x1+x2=m+1

P=x1x2=-3

có P=\(\frac{-6}{x_1^2+x_2^2+x_1x_2}=\frac{-6}{\left(x_1+x_2\right)^2-x_1x_2}\)=\(\frac{-6}{\left(m+1\right)^2-\left(-3\right)}=\frac{-6}{\left(m+1\right)^2+3}\)

vì (m+1)2\(\ge\)0,\(\forall m\)<=>(m+1)2+3\(\ge\)3

\(\Leftrightarrow\frac{1}{\left(m+1\right)^2+3}\le\frac{1}{3}\Leftrightarrow\frac{-6}{\left(m+1\right)^2+3}\ge-2\)=>min P=-2<=>m=-1

6 tháng 5 2019

thank you!!

6 tháng 5 2019

LẠY ÔNG ĐI QUA . LẠY BÀ ĐI LẠI , ĐỘ LÒNG TỪ BI CỨU GIÚP CON QUA CƠN HOẠN NẠN .