Cho a,b,c >0, a+b+c=1
CMR: \(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(y^2-y-12=0\)
\(\Leftrightarrow y^2-4y+3y-12=0\)
\(\Leftrightarrow y\left(y-4\right)+3\left(y-4\right)=0\)
\(\Leftrightarrow\left(y+3\right)\left(y-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y+3=0\\y-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=-3\\y=4\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{3;-4\right\}\)
o) \(y^3-y^2-21y+45=0\)
\(\Leftrightarrow y^3+5y^2-6y^2-30y+9y+45=0\)
\(\Leftrightarrow y^2\left(y+5\right)-6y\left(y+5\right)+9\left(y+5\right)=0\)
\(\Leftrightarrow\left(y+5\right)\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(y+5\right)\left(y-3\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}y+5=0\\y-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=-5\\y=3\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-5;3\right\}\)
n) \(x^2+2x+7=0\)
\(\Leftrightarrow x^2+2x+1+6=0\)
\(\Leftrightarrow\left(x+1\right)^2+6=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là : \(S=\varnothing\)
q) \(\left(y+3\right)^2+\left(y+5\right)^2=0\)
Mà \(\left(y+3\right)^2\ge0\)
\(\left(y+5\right)^2\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left(y+3\right)^2=0\\\left(y+5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-3\\y=-5\end{cases}}\)
Vậy ..... (Cái này k biết kết luận ntn)
p) \(2y^3-5y^2+8y-3=0\)
\(\Leftrightarrow2y^3-y^2-4y^2+2y+6y-3=0\)
\(\Leftrightarrow y^2\left(2y-1\right)-2y\left(2y-1\right)+3\left(2y-1\right)=0\)
\(\Leftrightarrow\left(2y-1\right)\left(y^2-2y+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2y-1=0\\y^2-2y+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{2}\left(tm\right)\\\left(y-1\right)^2+2=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\frac{1}{2}\right\}\)
x^2 + 4/x^2 -3x + 6/x -2 =0
(x^2 +4/x^2) -3(x -2/x) -2 =0
Đặt t = x-2/x
Suy ra
t^2 + 4 - 3t-2=0
t^2- 3t + 2 = 0
(t-1) (t-2) = 0
t=1 hay t =2
Nếu t =1
x-2/x =1
(x^2-2)/x =1
x^2-2 = x
x^2-x-2=0
(x+1) (x-2)=0
x= -1 hay x= 2
Nếu t = 2
x- 2/x =2
(x^2-2)/x =2
x^2 -2 = 2x
x^2- 2x-2 =0
(x-1)^2 -3 =0
(x-1)^2 =3
x-1 = căn 3 hay x -1 = âm căn 3
x= căn 3 + 1 hay x = 1 + âm căn 3
Vậy....
A B C D O
Ta có: \(AB//CD\left(Gt\right)\)
Áp dụng định lí ta - let trong hình thang \(ABCD\)ta có:
\(\Rightarrow\frac{OA}{OC}=\frac{OB}{OD}\Rightarrow OA.OD=OB.OC\left(đpcm\right)\)
\(-2x^2-3x+5,875=-2\left(x^2+1.5x-2,9375\right)\)
\(=-2\left(x^2+1.5x+2,25-5,1875\right)\)
\(=-2\left[\left(x+1,5\right)^2-5,1875\right]\)
\(=-2\left(x+1,5\right)^2+10,375\)
Ta có: \(\left(x+1,5\right)^2\ge0\forall x\inℝ\)
\(\Rightarrow-2\left(x+1,5\right)^2\le0\forall x\inℝ\)
\(\Rightarrow-2\left(x+1,5\right)^2+10,375\le10,375\forall x\inℝ\)
(Dấu "="\(\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\))
Vậy GTLN của \(-2x^2-3x+5,875\)là 10,375\(\Leftrightarrow x=-1,5\)
Sửa)):
Từ dòng 2
\(=-2\left(x^2+1,5x+0,5625-6,4375\right)\)
\(=-2\left(x+0,75\right)^2+12,875\le12,875\)
Ta có: \(a+b+c=1\) nên ta được \(1+b-a>0\Rightarrow\frac{a}{1+b-a}>0\)
Ta dễ dàng có thể thấy được là: \(1-\left(a-b\right)^2\le1\) do đó ta có:
\(\frac{a}{1+b-a}\ge\frac{a\left[1-\left(a-b\right)^2\right]}{1+b-a}=a\left(1+a-b\right)\)
Tương tự như trên:
\(\frac{b}{1+c-b}\ge b\left(1+b-c\right);\frac{c}{1+a-b}\ge c\left(1+b-a\right)\)
Cộng theo vế các BĐT trên ta được: \(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge a\left(1+a-b\right)+b\left(1+b-c\right)+c\left(1+c-a\right)\)
Bài sẽ hoàn tất nếu chỉ ra được: \(a\left(1+a-b\right)+b\left(1+b-c\right)+c\left(1+c-a\right)\ge1\)
Hay: \(a+b+c+a^2+b^2+c^2-\left(ab+bc+ac\right)\ge1\)
Ta thấy: \(a^2+b^2+c^2\ge ab+bc+ac\) (luôn đúng)
Vậy bđt được cm
(Không chắc)
Băng god quá, ganh hong lại:
\(VT\ge\frac{\left(a+b+c\right)^2}{\left(a+ab-a^2\right)+\left(b+bc-b^2\right)+\left(c+ca-c^2\right)}\)
\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)+\left(ab+bc+ca-a^2-b^2-c^2\right)}\ge\frac{\left(a+b+c\right)^2}{a+b+c}=1\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)