Một cửa hàng khuyến mãi một sản phẩm bánh kem mua 4 tặng 1. Giá 1 bánh là 6000 đồng. Lâm mua 11 bánh, Thành mua 14 bánh. Lâm bàn với thành mua chung sẽ ít tốn tiền hơn từng người mua. Thành hỏi Lâm mua chung sẽ đỡ tốn bao nhiêu tiền và mỗi người sẽ chi trả thế nào? Em hãy giúp Lâm trả lời 2 câu hỏi đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



giả sử a + b > 2.
đặt a = x + y ; b = x - y, ta có :
a + b = 2x > 2 \(\Rightarrow\)x > 1 ( 1 )
Ta có : a3 + b3 = ( x + y )3 + ( x - y )3 = 2x3 + 6xy2
do ( 1 ) nên 2x3 > 2 ; 6xy2 \(\ge\)0 .
vậy a3 + b3 > 2, trái với giả thiết
\(\Rightarrow\)a + b \(\le\)2


Để pt có 2 nghiệm \(x_1,x_2\) thì \(\Delta'=4\left(m-1\right)^2-3\left(m^2-4m+1\right)=m^2+4m+1\ge0\)
\(\Leftrightarrow\)\(\left(m^2+4m+4\right)-3\ge0\)\(\Leftrightarrow\)\(\left(m+2\right)^2-3\ge0\)
\(\Leftrightarrow\)\(\left(m+2-\sqrt{3}\right)\left(m+2+\sqrt{3}\right)\ge0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}m\ge\sqrt{3}-2\\m\le-\sqrt{3}-2\end{cases}}\)
Ta có : \(\left|x_1-x_2\right|=2\)
\(\Leftrightarrow\)\(\left(x_1-x_2\right)^2=4\)
\(\Leftrightarrow\)\(x_1^2+x_2^2-2x_1x_2=4\)
\(\Leftrightarrow\)\(\left(x_1+x_2\right)^2-4x_1x_2=4\) \(\left(1\right)\)
Theo định lý Vi-et ta có \(\hept{\begin{cases}x_1+x_2=\frac{4\left(1-m\right)}{3}\\x_1x_2=\frac{m^2-4m+1}{3}\end{cases}}\)
\(\left(1\right)\)\(\Leftrightarrow\)\(\left(\frac{4-4m}{3}\right)^2-4\left(\frac{m^2-4m+1}{3}\right)=4\)
\(\Leftrightarrow\)\(\frac{16-32m+16m^2}{9}-\frac{4m^2-16m+4}{3}-4=0\)
\(\Leftrightarrow\)\(\frac{16m^2-32m+16-12m^2+48m-12-36}{9}=0\)
\(\Leftrightarrow\)\(4m^2+16m-32=0\)
\(\Leftrightarrow\)\(\left(m^2+4m+4\right)-12=0\)
\(\Leftrightarrow\)\(\left(m+2\right)^2=12\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}m=2\sqrt{3}-2\left(tm\right)\\m=-2\sqrt{3}-2\left(tm\right)\end{cases}}\)
Vậy để pt có hai nghiệm \(x_1,x_2\) thoả mãn \(\left|x_1-x_2\right|=2\) thì \(\orbr{\begin{cases}m=2\sqrt{3}-2\\m=-2\sqrt{3}-2\end{cases}}\)
chả biết đúng ko nhưng xem thử nha -_-

\(a)\)\(P=\left(\sqrt{x}-1\right)\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)
\(P=\left(\sqrt{x}-1\right)\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\frac{\sqrt{x}-x}{1-\sqrt{x}}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)
\(P=\left(\sqrt{x}-1\right)\left[\frac{\left(\sqrt{x}-x\sqrt{x}\right)+\left(1-x\right)}{1-\sqrt{x}}\right]\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)
\(P=\left(\sqrt{x}-1\right)\left[\frac{\left(1-x\right)\left(1+\sqrt{x}\right)}{1-\sqrt{x}}\right]\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)
\(P=\frac{\left(x-1\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)^2}{\left(1-x\right)^2}=\frac{-\left(1-x\right)\left(1-\sqrt{x}\right)}{1-x}=\sqrt{x}-1\)
\(b)\)\(P=\sqrt{9+4\sqrt{2}}-1=\sqrt{8+4\sqrt{2}+1}-1=\sqrt{\left(2\sqrt{2}+1\right)^2}-1=2\sqrt{2}\)
\(c)\) Ta có : \(\frac{2}{P}=\frac{2}{\sqrt{x}-1}\)
Để P nguyên thì \(\frac{2}{\sqrt{x}-1}\) nguyên hay \(2⋮\left(\sqrt{x}-1\right)\)\(\Rightarrow\)\(\left(\sqrt{x}-1\right)\inƯ\left(2\right)\)
Mà \(Ư\left(2\right)=\left\{1;-1;2;-2\right\}\)\(\Rightarrow\)\(x\in\left\{\sqrt{2};0;\sqrt{3}\right\}\)
Do x là số chính phương nên \(x=0\)
Vậy để \(\frac{2}{P}\) là số nguyên thì \(x=0\)
Mua tất cả số cái là: 11+14=25 cái
Nếu mua riêng thì số tiền là: 25x6000= 150000 đồng
Nếu mua chung thì hết số tiền là: 6x6000+6000=42000 đồng
Đỡ tốn là: 150000-42000=...
Đ/s:..
Làm lugg tugg qá, sai thỳ mogg bỏ qa
Đỡ tốn 6000 đồng
Lâm: 52800 đồng
Thành : 67200 đồng
Giải thích các bước giải:
Ta có : 8+2+1=11
Nếu bạn Lâm mua riêng thì số tiền phải trả là
(8+1).6000=54000 đồng ( 2 bánh còn lại được tặng)
Ta có : 8+2+4=14
Nếu bạn Thành mua riêng thì số tiền phải trả là :
(8+4).6000=72000 đồng ( 2 bánh còn lại được tặng)
Nếu hai bạn mua chung thì tổng số bánh là
11+14=25 bánh
25=20+5
Số tiền mà Lâm và Thành cần bỏ ra là
20.6000=120000 đồng ( 5 bánh còn lại được tặng)
Hai bạn mua chung thì đỡ tốn số tiền là :
(54000+72000)-120000=6000 đồng
Lâm phải trả số tiền là :
120000:25.11=52800 đồng
Thành phải trả số tiền là :
120000-52800=67200 đồng