Giải phương trình
\(2\sqrt{x^2-2x-1}+\sqrt[3]{x^3-14}=x-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 thiếu đề
Bài 2 Mình không vẽ được hình nên bạn thông cảm
Xét tam giác vuông ACO có \(CM\perp AO\)
=> \(OM.OA=OC^2=OD^2\)
=> \(\frac{OD}{OA}=\frac{OM}{OD}\)
=> tam giác MDO đồng dạng tam giác DAO
=> MDO=OAD
Mà MDO=DEO
=> OAD=DEO
=> tứ giác ADOE nội tiếp
Vậy tứ giác ADOE nội tiếp
Phương trình hoành độ giao điểm: x2−(1−2m)x+m2=0x2−(1−2m)x+m2=0
Δ=(1−2m)2−4m2=−4m+1>0⇒m>14Δ=(1−2m)2−4m2=−4m+1>0⇒m>14
Do x1x1 là nghiệm của pt nên
x21−(1−2m)x1+m2⇔x21=(1−2m)x1−m2x12−(1−2m)x1+m2⇔x12=(1−2m)x1−m2
Thế vào bài toán:
⇔((1−2m)x1−m2−x1)(2mx2+m2)+m4+5m=3⇔((1−2m)x1−m2−x1)(2mx2+m2)+m4+5m=3
⇔−(2mx1+m2)(2mx2+m2)+m4+5m−3=0⇔−(2mx1+m2)(2mx2+m2)+m4+5m−3=0
⇔−4m2x1x2−2m3(x1+x2)−m4+m4+5m−3=0⇔−4m2x1x2−2m3(x1+x2)−m4+m4+5m−3=0
⇔−4m2.m2−2m3(1−2m)+5m−3=0⇔−4m2.m2−2m3(1−2m)+5m−3=0
⇔2m3−5m+3=0⇔2m3−5m+3=0
⇔(m−1)(2m2+2m−3)=0⇒⎡⎣⎢⎢⎢m=1m=−1+7√2m=−1−7√2<14(l)
Phương trình hoành độ giao điểm: x2−(1−2m)x+m2=0x2−(1−2m)x+m2=0
Δ=(1−2m)2−4m2=−4m+1>0⇒m>14Δ=(1−2m)2−4m2=−4m+1>0⇒m>14
Do x1x1 là nghiệm của pt nên
x21−(1−2m)x1+m2⇔x21=(1−2m)x1−m2x12−(1−2m)x1+m2⇔x12=(1−2m)x1−m2
Thế vào bài toán:
⇔((1−2m)x1−m2−x1)(2mx2+m2)+m4+5m=3⇔((1−2m)x1−m2−x1)(2mx2+m2)+m4+5m=3
⇔−(2mx1+m2)(2mx2+m2)+m4+5m−3=0⇔−(2mx1+m2)(2mx2+m2)+m4+5m−3=0
⇔−4m2x1x2−2m3(x1+x2)−m4+m4+5m−3=0⇔−4m2x1x2−2m3(x1+x2)−m4+m4+5m−3=0
⇔−4m2.m2−2m3(1−2m)+5m−3=0⇔−4m2.m2−2m3(1−2m)+5m−3=0
⇔2m3−5m+3=0⇔2m3−5m+3=0
⇔(m−1)(2m2+2m−3)=0⇒ m=1 hoặc m=−1+7√2 hoặc m=−1−7√2<14(l)
Vậy ............................................
k cho mk nha !!!
Mình không vẽ được hình nên bạn thông cảm
c, Từ câu a
Tứ giác AMQK nội tiếp
=> KQI=MAK
Mà MAK=KPI (do PH song song MA)
=> KQI=KPI
=> tứ giác KQPI nội tiếp
=> PKI=IQP=BQP
Mà BQP=PAB( tứ giác AQPB nội tiếp đường tròn tâm O)
=> PKI=PAB
=> \(KI//AB\)
Lại có \(AB\perp AM\)
=> \(KI\perp AM\)(đpcm)
Vậy \(KI\perp AM\)
Trả lời : Bài làm
Đổi :\(1h20p=\frac{4}{3}h\)
Vận tốc thực của cano là:30-5=25 (km/h)
Gọi x là độ dài từ A đến B
Thời gian cano xuôi dòng là:\(\frac{x}{25+5}h\)
Thời gian cano ngược dòng là: \(\frac{x}{25-5}h\)
Từ đó ta có pt: \(\frac{x}{20}-\frac{x}{30}=\frac{4}{3}\)
Giải ra được \(x=80km\)
Mk ko chắc
Tk mk nha
\(\sqrt{12-3\sqrt{7}}=\frac{\sqrt{24-2.3\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{24-2\sqrt{63}}}{\sqrt{2}}=\frac{\sqrt{\sqrt{21}^2-2\sqrt{21}\sqrt{3}+\sqrt{3}^2}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{21}-\sqrt{3}\right)^2}}{\sqrt{2}}=\frac{\sqrt{21}-\sqrt{3}}{\sqrt{2}}\)
ĐKXĐ \(x^2-2x-1\ge0\)
Đặt \(\sqrt{x^2-2x-1}=a,\sqrt[3]{x^3-14}=b\left(a>0\right)\)
=> \(b^3-6a^2=x^3-14-6x^2+12x+6=x^3-6x^2+12x-8=\left(x-2\right)^3\)
Khi đó phương trình tương đương
\(2a+b=\sqrt[3]{b^3-6a^2}\)
<=>:\(\left(2a+b\right)^3=b^3-6a^2\)
<=>\(8a^3+6a^2+12a^2b+6ab^2=0\)
<=> \(\orbr{\begin{cases}a=0\\4a^2+3a+6ab+3b^2=0\left(2\right)\end{cases}}\)
Phương trình (2)
<=>\(3\left(a+b\right)^2+a^2+3a=0\)
Mà \(a\ge0\)
=> \(\hept{\begin{cases}a=0\\b=0\end{cases}}\)(vô nghiệm)
+a=0
=> \(x^2-2x-1=0\)
Vậy \(S=\left\{\sqrt{2}+1;-\sqrt{2}+1\right\}\)