. Cho tam giác ABC, AB = 4 ; AC = 4,5. Trên AB và AC lấy các điểm M và N sao cho AM = AN = 3cm. Gọi O là giao điểm của BN và CM. Tính \(\frac{OB}{OM}\)+\(\frac{OC}{ON}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{10}+x^2+1\)
\(=x^{10}+x^8-x^8+x^6-x^6+x^4-x^4+x^2+1\)
\(=\left(x^{10}+x^8+x^6\right)-\left(x^8+x^6+x^4\right)+\left(x^4+x^2+1\right)\)
\(=x^6\left(x^4+x^2+1\right)-x^4\left(x^4+x^2+1\right)+\left(x^4+x^2+1\right)\)
\(=\left(x^6-x^4+1\right)\left(x^4+x^2+1\right)\)
\(=\left(x^6-x^4+1\right)\left(x^4+x^3-x^3+x^2+x^2-x^2+x-x+1\right)\)
\(=\left(x^6-x^4+1\right)\)
\(\left[\left(x^4-x^3+x^2\right)+\left(x^3-x^2+x\right)+\left(x^2-x+1\right)\right]\)
\(=\left(x^6-x^4+1\right)\)
\(\left[x^2\left(x^2-x+1\right)+x\left(x^2-x+1\right)+\left(x^2-x+1\right)\right]\)
\(=\left(x^6-x^4+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)
x10+x2+1
=( x10 - x ) + ( x2 + x + 1)
= x[ (x3)3-1] + ( x2 + x +1)
=x[( x3-1)( x6 + x3 +1) + (x2 + x +1)
=x[(x-1)(x2 + x +1)( x6 + x3 +1)] + (x2 + x +1)
=x(x2 + x +1)[(x-1)( x6 + x3 +1) +1 ]
=x2(x2 + x +1)(x6-x5+x3-x2+1)
\(ĐKXĐ:x\ne\pm1\)
\(pt\Leftrightarrow\frac{\left(x+1\right)\left(x^2+x+1\right)-3x^2\left(x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)\(=\frac{2x\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)-3x^2\left(x^2+x+1\right)\)\(=2x\left(x+1\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x+1-3x^2\right)\left(x^2+x+1\right)\)\(=2x\left(x^2-1\right)\)
\(\Leftrightarrow-3x^4-2x^3-x^2+2x+1\)\(=2x^3-2x\)
\(\Leftrightarrow-3x^4-4x^3-x^2+4x+1=0\)
A B C E F K
a) Ta có :
\(\frac{AE}{AB}=\frac{1,5}{6}=\frac{1}{4}\)
\(\frac{AF}{AC}=\frac{2}{8}=\frac{1}{4}\)
\(\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)
\(\Rightarrow EF//BC\)(Theo định lí Ta-lét đảo)
b)Áp dụng định lí Pythagoras vào △ABC vuông tại A :
BC2 = AB2 + AC2
\(\Rightarrow\)BC2 = 62 + 82
\(\Rightarrow\)BC2 = 100
\(\Rightarrow\)BC = 10 cm
Xét △ABC có : MN // BC
\(\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}=\frac{EF}{BC}\)(Hệ quả định lí Ta-lét)
\(\Rightarrow\frac{EF}{BC}=\frac{1}{4}\)
\(\Rightarrow EF=\frac{1}{4}BC=\frac{1}{4}\cdot10=2,5\left(cm\right)\)
c) Xét △KBC có EF // BC
\(\Rightarrow\frac{KB}{KF}=\frac{KC}{KE}\)(Theo định lí Ta-lét)
\(\Rightarrow KE.KB=KF.KC\)