Phân tích đa thức sau thành nhân tử
3x³-14x²+4x+3
Giúp mik vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C a O E F D
a, xét tam giác ABD có : EO // AB (Gt)
=> EO/AB = DO/DB (hệ quả) (1)
xét tam giác ABC có : OF // AB (gt)
=> OF/AB = OC/CA (hệ quả) (2)
xét tam giác ODC có : AB // DC (gt)
=> DO/DB = OC/CA (hệ quả) (3)
(1)(2)(3) => OE = OF
b, xét tam giác ABD có EO // AB (gt)
=> EO/AB = DE/AD (hệ quả) (4)
xét tam giác ACD có : EO // DC
=> EO/DC = EA/AD (hệ quả) (5)
(4)(5) => EO/AB + EO/DC = DE/AD + EA/AD
=> EO(1/AB + 1/BC) = AD/AD = 1 (*)
xét tam giác ACB có : FO // AB
=> OF/AB = FC/BC (hệ quả) (6)
xét tam giác BDC có : OF // DC
=> OF/DC = BF/BC (hệ quả) (7)
(6)(7) => OF/AB + OF/DC = FC/BC + BF/BC
=> OF(1/AB + 1/DC) = BC/BC = 1 (**)
(*)(**) => OF(1/AB + 1/CD) + OE(1/AB + 1/DC) = 2
=> (OF + OE)(1/AB + 1/DC) = 2
có OF + OE = EF
=> 1/AB + 1/DC = 2/EF
A B C E D H I
a) Xét \(\Delta AEC\) và \(\Delta ADB\) có :
\(\hept{\begin{cases}\widehat{A}chung\\\widehat{AEC}=\widehat{ADB}\left(=90^o\right)\end{cases}}\)
\(\Rightarrow\Delta AEC\) đồng dạng \(\Delta ADB\) (g.g)
b) Ta có : \(\Delta AEC\) đồng dạng \(\Delta ADB\)
\(\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\)
Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(\hept{\begin{cases}\widehat{A}chung\\\frac{AE}{AD}=\frac{AC}{AB}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\Delta ADE\) đồng dạng \(\Delta ABC\) (c.g.c)
c) Xét \(\Delta ABF\) và \(\Delta CBE\) có :
\(\hept{\begin{cases}\widehat{B}hung\\\widehat{AFB}=\widehat{CEB}=90^o\end{cases}}\)
\(\Rightarrow\Delta ABF\) đồng dạng \(\Delta CBE\) (g.g)
\(\Rightarrow\frac{AB}{CB}=\frac{BF}{BE}\Rightarrow BE\cdot AB=BC\cdot BF\)
Chứng minh tương tự ta có : \(\Delta BDC\) đồng dạng \(\Delta AFC\) (g.g)
\(\Rightarrow\frac{DC}{FC}=\frac{BC}{AC}\Rightarrow CD\cdot AC=FC\cdot BC\)
Khi đó : \(BE.AB+CD.AC=BF.BC+FC.BC=BC.BC=BC^2\)
A B C D E F H I
a, Xét \(\Delta AEC\)và \(\Delta ABD\)có
\(\widehat{AEC}=\widehat{ADB}=90^0\)
\(\widehat{A}chung\)
\(\Rightarrow\)\(\Delta AEC\)\(đồng dạng\)\(\Delta ABD\)(g.g)
b, Vì \(\Delta AEC\)\(đồng dạng\)\(\Delta ABD\)(g.g) nên \(\frac{AD}{AC}=\frac{AE}{AB}\)
Xét \(\Delta ADE\)và \(\Delta ABC\)có
\(\frac{AD}{AC}=\frac{AE}{AB}\),\(\widehat{A}\)chung
\(\Rightarrow\)\(\Delta ADE\)đồng dạng \(\Delta ABC\)(c.g.c)
Các câu còn lại khi nào rảnh giải tiếp :P
a) ( 3.x + 1 ) . ( 7.x + 3 ) = (5.x-7 ) . ( 3.x + 1 )
<=> ( 3.x + 1 ) . ( 7.x + 3 ) - ( 5.x - 7) . ( 3.x + 1 ) = 0
<=> ( 3.x + 1 ) . ( 7.x + 3 - 5.x + 7 ) = 0
<=> ( 3.x + 1 ) . ( 2.x + 10 ) = 0
<=> \(\orbr{\begin{cases}3.x+1=0\\2.x+10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-5\end{cases}}}\)
Vậy x = { \(\frac{-1}{3};-5\)}
b) x2 + 10.x + 25 - 4.x . ( x + 5 ) = 0
<=> ( x + 5 )2 -4.x . (x + 5 ) = 0
<=> ( x+ 5 ) . ( x + 5 - 4.x ) = 0
<=> ( x + 5 ) . ( 5 - 3.x ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\5-3.x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{3};-5\right\}\)
c) (4.x - 5 )2 - 2. ( 16.x2 -25 ) = 0
<=> ( 4.x-5)2 -2 .( 4.x-5) .( 4.x + 5 ) = 0
<=> ( 4.x -5 )2 - ( 8.x+ 10 ) . ( 4.x -5 ) = 0
<=> ( 4.x -5 ) . ( 4.x-5 - 8.x - 10 ) = 0
<=> ( 4.x - 5 ) . ( -4.x - 15 ) = 0
<=> \(\orbr{\begin{cases}4.x-5=0\\-4.x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=\frac{-15}{4}\end{cases}}}\)
Vậy x = \(\left\{\frac{5}{4};\frac{-15}{4}\right\}\)
d) ( 4.x + 3 )2 = 4. ( x2 - 2.x + 1 )
<=> 16.x2 + 24.x + 9 - 4.x2 + 8.x - 4 = 0
<=> 12.x2 + 32.x + 5 =0
<=> 12. ( x +\(\frac{1}{8}\) ) . ( x + \(\frac{5}{2}\)) = 0
<=> \(\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{cases}}}\)
Vậy x = \(\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)
e) x2 -11.x + 28 = 0
<=> x2 -4.x - 7.x + 28 = 0
<=> ( x - 7 ) . ( x - 4 ) = 0
<=> \(\orbr{\begin{cases}x-7=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=4\end{cases}}}\)
Vậy x = { 4 ; 7 }
f ) 3.x.3 - 3.x2 - 6.x = 0
<=> 3.x. ( x2 -x - 2 ) = 0
<=> 3.x. ( x - 2 ) . ( x + 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
\([x=0\) \([x=0\)
( Lưu ý :Lưu ý này không cần ghi vào vở : Chị nối 2 ý đó làm 1 nha cj ! )
Vậy x = { 2 ; -1 ; 0 }
3x^3+x^2 -15x^2-5x+9x+3
= (3x+1)(x^2-5x+3)
\(3x^3-14x^2+4x+3\)
\(=3x^3+x^2-15x^2-5x+9x+3\)
\(=x^2\left(3x+1\right)-5x\left(3x+1\right)+3\left(3x+1\right)\)
\(=\left(3x+1\right)\left(x^2-5x+3\right)\)