tìm giá trị nhỏ nhất của biểu thức
C = \(\sqrt{25x^2-20x+4}+\sqrt{25x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(a^2+b^2=3-ab\)
Mà \(a^2+b^2\ge2ab\)
\(\Leftrightarrow3\ge3ab\)
\(\Leftrightarrow1\ge ab\left(1\right)\)
Cũng có:\(a^2+b^2\ge-2ab\)
\(\Leftrightarrow3-ab\ge-2ab\)
\(\Leftrightarrow-3\le ab\left(2\right)\)
Từ (1) và (2) \(1\ge ab\ge-3\)
Lại có :
\(\left(a^2+b^2\right)^2=\left(3-ab\right)^2\)
\(\Leftrightarrow a^4+b^4=9-6ab+a^2b^2-2a^2b^2=9-6ab-a^2b^2\)
\(\Rightarrow P=a^4+b^4-ab=9-7ab-a^2b^2=-\left(a^2b^2+7ab-9\right)\)
\(\Leftrightarrow P=-\left(a^2b^2-7ab+8ab\right)\)
\(\Leftrightarrow P=\left(ab+3\right)\left(-ab-4\right)+21\)
Có \(ab\ge-3\Rightarrow ab+3\ge0\)
\(-ab-4< 0\)
\(\Rightarrow P\le21\)
Max P = 21<=> ab=-3;a=-b<=>\(b=\pm\sqrt{3};a=\pm\sqrt{3}\)tương ứng
Bạn vẽ hình nhé
Xét tam giác AOB
=> \(AO+OB>AB\)(bất đẳng thức tam giác )
=> \(AB< 6.25\) => \(a,b,c< 6.25\)
Tương tự \(AC< 6.25\),\(BC< 6.25\)
Sử dụng công thức herong và công thức tính S tam giác ta có
\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)(p là nửa chu vi tam giác )
\(S=\frac{abc}{4R}\)
=> \(\frac{abc}{R}=\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)}\)
Mà a,b,c là các số tự nhiên , \(\frac{abc}{4R}=\frac{abc}{12.5}\)là số hữu tỉ
=> \(\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)}\)là số tự nhiên
=> \(\frac{abc}{R}\)là số tự nhiên
=> \(\frac{8abc}{25}\)là số tự nhiên
Mà \(a,b,c< 6.25\)
=> 2 trong 3 số sẽ chia hết cho 5 => 2 trong 3 số sẽ bằng 5
Vì vai trò của a,b,c như nhau
Giả sử a=b=5
Thay vào công thức
=> \(8c=\sqrt{\left(10+c\right)\left(10-c\right)\left(c\right)\left(c\right)}\)
=> \(64c^2=100c^2+c^4\)
=> \(c=6\)
Vậy ba cạnh của tam giác là 5,5,6
\(\left(x+6\right)\left(\frac{360}{x}+2\right)-12=360\) (\(x\ne0\))
\(\Leftrightarrow\left(x+6\right)\left(\frac{360}{x}+2\right)=372\)
\(\Leftrightarrow360+2x+\frac{2160}{x}+12=372\)
\(\Leftrightarrow360x+2x^2+2160+12x=372x\)
\(\Leftrightarrow x^2=-2160\)( vô lý )
=> phương trình vô nghiệm
âu này làm như bt thôi
tthay nghiệm vào rồi tìm m
sau đó thay m vào tìm o còn lại
b, tìm đenta
=> đenta >=0
=> theo hệ thức viet
=> thay vào ot cần tìm m
hok tốt
mik nha
\(3x^3+11x^2-3x+7-24x\sqrt{8x-1}+3\sqrt{8x-1}=0\)
Nhận thấy x = 0 không là nghiệm của pt
\(\Leftrightarrow3x^2+11x-3+\frac{7}{x}-24\sqrt{8x-1}+\frac{3}{x}\sqrt{8x-1}=0\)
Đặt \(\frac{1}{x}=t\)
\(\Leftrightarrow3x^2+11x-\left(3-7t+3t\left(\frac{8}{t}-1\right)\sqrt{\frac{8}{t}-1}\right)=0\)
Coi t là tham số mà tính nghiệm
\(C=\sqrt{25x^2-20x+4}+\sqrt{25x^2}\)
\(C=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x\right)^2}\)
\(C=\left|5x-2\right|+\left|5x\right|=\left|2-5x\right|+\left|5x\right|\)
\(C\ge\left|2-5x+5x\right|=2\)
Dấu " = " xảy ra \(\Leftrightarrow\)( 2 - 5x ) . 5x \(\ge\)0
\(\Leftrightarrow\)\(\hept{\begin{cases}x\ge0\\2-5x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x\le0\\2-5x\le0\end{cases}}\)
\(\Leftrightarrow\)\(0\le x\le\frac{2}{5}\)
Vậy GTNN của C là 2 \(\Leftrightarrow\)\(0\le x\le\frac{2}{5}\)
\(C=\sqrt{25x^2-20x+4}+\sqrt{25x^2}\)
\(C=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x\right)^2}\)
\(C=\left|5x-2\right|+\left|5x\right|\)
\(C=\left|2-5x\right|+\left|5x\right|\ge\left|2-5x+5x\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2-5x\ge0\\5x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le\frac{2}{5}\\x\ge0\end{cases}\Leftrightarrow0\le}x\le\frac{2}{5}}\)