Tính :
a) (\(\sqrt{12}+\sqrt{75}+\sqrt{27}\)) / \(\sqrt{15}\)
b) \(\frac{\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right)}{\sqrt{10}}\)
c)\(\frac{\left(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+\sqrt{\frac{9}{7}}\right)}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz Engel, ta được:
T\(\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)+x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\)-(x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\))
Áp dụng BĐT AM-GM , ta được:
T\(\ge\)2(x+y+z)-x-y-z-\(\frac{x+y+z}{2}\)=\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{2019}{2}\)
Vậy: GTNN của A=\(\frac{2019}{2}\)khi x=y=z=673
\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)(bunhiacopxki dạng phân thức)
=>\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}}\)
=>\(T>=\frac{2\left(x+y+z\right)^2}{4\left(x+yz\right)}=\frac{x+y+z}{2}=\frac{2019}{2}\)
xảy ra dấu= khi và chỉ khi \(x=y=z=\frac{2019}{3}\)
bt xác định \(\Leftrightarrow\sqrt{x-1}-2\ne0\)
\(\Leftrightarrow\sqrt{x-1}\ne2\)
\(\Leftrightarrow x-1\ne4\Leftrightarrow x\ne5\)
Bạn Đào Trọng Luân thiếu ĐK căn lớn hơn bằng 0
\(ĐKXĐ\hept{\begin{cases}x-1\ge0\\\sqrt{x-1}\ne2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x-1\ne4\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ne5\end{cases}}}\)
đkxđ: x khác 1
A=(5(x^2+2x+1)-4(x+1)+2017)/(x+1)
=5(x+1)-4+2017/(x+1)
để A nguyên => 2017 chia hết cho x+1
=> x+1 thuộc ước của 2017
=> x+1 thuộc (1,2017,-1,-2017)
=>x=0,2017,-2,-2018
~HỌC TỐT~
\(A=\frac{5x^2+6x+2018}{x+1}=\frac{5x\left(x+1\right)+\left(x+1\right)+2017}{x+1}\)
\(=5x+1+\frac{2017}{x+1}\)
Vì x nguyên => 5x+1 nguyên nên để A nguyên thì \(2017⋮x+1\)
..............................
To be continue
#)Giải :
Ta có : \(P=a^4+b^4+2-2-ab\)
Áp dụng BĐT cô si, ta có :
\(a^4+1\ge2a^2\)dấu = xảy ra khi a = 1
\(b^4+1\ge2b^2\)dấu = xảy ra khi b = 1
Khi đó \(P\ge2a^2+2b^2-2-ab\)
\(P\ge2\left(a^2+b^2+ab\right)-2-3ab\)
\(P\ge4-3ab\)( thay \(a^2+b^2+ab=3\)vào ) (1)
Mặt khác \(a^2+b^2\ge2ab\)
Khi đó \(a^2+b^2+ab=3\ge2ab+ab=3ab\)
\(\Rightarrow ab\le1\)(2)
Từ (1) và (2)
Ta có : \(P\ge4-3ab\ge4-3=1\)
Vậy P đạt GTNN là 1 khi a = b = 1
#~Will~be~Pens~#
\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
\(\Leftrightarrow\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\ge0\)
\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\)
\(\Rightarrow Q.E.D\)
Dấu "=" xảy ra khi a=b
\(gt\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=6\)
Đặt \(\frac{1}{x}=a,\frac{1}{y}=b,\frac{1}{z}=c\)thì \(P=a^2+b^2+c^2\)và \(a+b+c+ab+bc+ca=6\)
Giải:
Ta có: \(x^2+1\ge2\sqrt{x^2\cdot1}=2x\)
Tương tự rồi cộng theo vế ta được: \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(1)
Lại có: \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)(2)
Cộng (1), (2) theo vế ta được:
\(3P+3\ge2\left(x+y+z+xy+yz+zx\right)=2\cdot6=12\)
\(\Rightarrow3P\ge9\Leftrightarrow P\ge3\)
MinP = 3 khi a = b = c = 1 hay x = y = z = 1
A B C D E F O H K
Ta có điểm C nằm trên đường tròn (AB) nên ^ACB = 900 => BC vuông góc AE
Xét \(\Delta\)BAE: ^ABE = 900, BC vuông góc AE (cmt) => AB2 = AC.AE (Hệ thức lượng trong tam giác vuông)
Tương tự AB2 = AD.AF. Do đó AC.AE = AD.AF. Từ đây, tứ giác ECDF nội tiếp.
Xét \(\Delta\)ABF: O là trung điểm AB; H là trung điểm BF => OH là đường trung bình trong \(\Delta\)ABF => OH // AF
Lại có CD là đường kính của (O), A thuộc (O) nên ^CAD = 900 => AE vuông góc AF
Do vậy OH vuông góc AE. Kết hợp với AO vuông góc HE (tại B) suy ra O là trực tâm \(\Delta\)AEH
=> EO vuông góc AH => ^AKE = ^ABE = 900 => A,K,B,E cùng thuộc đường tròn (AE)
Ta thấy AB,CD,KE tại O. Khi đó, áp dụng hệ thức lượng đường tròn: OE.OK = OA.OB = OC.OD
=> C,K,D,E cùng thuộc 1 đường tròn hay K thuộc đường tròn (DCE)
Mà tứ giác ECDF nội tiếp (cmt) nên K thuộc đường tròn ngoại tiếp tứ giác ECDF (đpcm).
o A D K C E B H F
Bài Toán trên có các câu hỏi a, b, c thứ tự để hướng dẫn làm bài
I)Chứng minh tứ giác ECDF nội tiếp
+) ACBD là hình chữ nhật ( tự chứng minh)
=> \(\widehat{ABC}=\widehat{ADC}\)
mà \(\widehat{ABC}=\widehat{AEB}\)( cùng phụ góc CBE)
=> \(\widehat{ADC}=\widehat{AEB}=\widehat{CEF}\)
=> Tứ giác ECDF nội tiếp
II) Chứng minh Tứ giác KDBO nội tiếp
Xét \(\Delta ABE\)và \(\Delta FBA\)
Hai tam giác trên đồng dạng ( tự chứng minh)
=> \(\frac{AB}{FB}=\frac{BE}{BA}\Leftrightarrow\frac{2.OB}{2.BH}=\frac{BE}{BA}\Leftrightarrow\frac{OB}{BH}=\frac{BE}{BA}\)(1)
Mặt khác \(\widehat{OBE}=\widehat{HBA}=90^o\)(2)
(1), (2) => \(\Delta OBE~\Delta HBA\)
=> \(\widehat{BEO}=\widehat{BAH}=\widehat{OAK}\)
=> Tứ giác BEAK nội tiếp
=> \(\widehat{AKO}=\widehat{OBE}=90^o\)
=> \(\widehat{OKH}=90^o\)(1)
Xét tam giác BDF vuông tại D , DH là đường trung tuyến
=> DH=HB
=> \(\widehat{HDB}=\widehat{HBD}=\widehat{BCD}=\widehat{ADC}\)
=> \(\widehat{ODH}=\widehat{ODB}+\widehat{HDB}=\widehat{ODB}+\widehat{ADO}=\widehat{ADB}=90^o\)(2)
Ta lại có: \(\widehat{OBH}=90^o\)(3)
Từ (1), (2), (3)
=> DKOBH cùng thuộc đường tròn đường kính OH
=> DKOB nội tiếp (4)
III) Chứng minh tứ giác DKCE nội tiếp
Từ (4) => \(\widehat{DKO}+\widehat{DBO}=180^o\)
Mặt khác : \(\widehat{DBO}=\widehat{DCA}\)và \(\widehat{DCA}+\widehat{DCE}=180^o\)
Từ 3 điều trên => \(\widehat{DKO}=\widehat{DCE}=\widehat{OCE}\)
=> Tứ giác DKCE nội tiếp
Từ (I) và (III)
=> D, K, C, E , F cùng thuộc một đường tròn
=> K thuộc đường tròn ngoại tiếp tứ giác ECDF
Câu 1 bạn dùng chia hết cho 13
Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8
Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1
Khi đó ta có x^2+3x-4=(x-1)(x+4)
đến đây thì dễ rồi
Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra
Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2
Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra
a)\(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right):\sqrt{15}\)
\(=\left(2\sqrt{3}+5\sqrt{3}+3\sqrt{3}\right):\sqrt{15}\)
\(=10\sqrt{3}:\sqrt{15}=\sqrt{300}:\sqrt{15}=\sqrt{20}=2\sqrt{5}\)
b) \(\frac{12\sqrt{50}-8\sqrt{200}+7\sqrt{450}}{\sqrt{10}}\)
\(=\frac{60\sqrt{2}-80\sqrt{2}+105\sqrt{2}}{\sqrt{10}}\)
\(=\frac{85\sqrt{2}}{10}=\frac{17\sqrt{2}}{2}\)
c)\(\frac{\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+\sqrt{\frac{9}{7}}}{7}=\frac{\frac{1}{\sqrt{7}}-\frac{4}{\sqrt{7}}+\frac{3}{\sqrt{7}}}{7}=\frac{0}{7}=0\)