Tìm n \(\inℤ^+\) bé nhất để
F = n3 + 4n2 - 20n - 48 ⋮ 125
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{7}-\sqrt{3}\right)^2+\sqrt{84}\)
\(=10-2\sqrt{21}+2\sqrt{21}\)
= 10
Giải phương trình:
$$ 2\left(x-\sqrt{2 x^2+5 x-3}\right)=1+x(\sqrt{2 x-1}-2 \sqrt{x+3}) \text {. }$$
ĐKXĐ : \(\left\{{}\begin{matrix}2x^2+5x-3\ge0\\2x-1\ge0\\x+3\ge0\end{matrix}\right.\)
Phương trình tương đương : \(2x-2\sqrt{2x^2+5x+3}=1+x.\left(\sqrt{2x-1}-2\sqrt{x+3}\right)\)
\(\Leftrightarrow2x-1-2\sqrt{\left(2x-1\right)\left(x+3\right)}=x.\left(\sqrt{2x-1}-2\sqrt{x+3}\right)\)
\(\Leftrightarrow\sqrt{2x-1}.\left(\sqrt{2x-1}-2\sqrt{x+3}\right)=x.\left(\sqrt{2x-1}-2\sqrt{x+3}\right)\)
\(\Leftrightarrow\left(\sqrt{2x-1}-x\right).\left(\sqrt{2x-1}-2\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x-1}=x\\\sqrt{2x-1}=2\sqrt{x+3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{13}{2}\left(\text{loại}\right)\end{matrix}\right.\)
Vậy x = 1 là nghiệm phương trình
b ) ĐKXĐ : x ≥ 2
\(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)
\(\sqrt{4.\left(x-2\right)}-\dfrac{12}{3}\sqrt{x-2}=-1\)
\(2\sqrt{x-2}-4\sqrt{x-2}=-1\)
\(-2\sqrt{x-2}=-1\)
\(\sqrt{x-2}=\dfrac{1}{2}\)
\(\left(\sqrt{x-2}\right)^2=\left(\dfrac{1}{2}\right)^2\)
\(x-2=\dfrac{1}{4}\)
\(x=\dfrac{1}{8}\)
Vậy biểu thức vô nghiệm
a ) \(\sqrt{4-3x}=8\)
\(\left(\sqrt{4-3x}\right)^2=8^2\)
\(4-3x=8\)
\(-3x=4\)
\(x=-\dfrac{4}{3}\)
Ta có \(F=\left(n-4\right)\left(n+2\right)\left(n+6\right)\)
Với \(n=4;n=-2;n=-6\) thì hiển nhiên F chia hết cho 125. Nhưng do n là số nguyên dương nên ta chỉ chọn \(n=4\)
Nếu F khác 0:
Do F chia hết cho 125 nên F cũng chia hết cho 5. Do 5 là số nguyên tố nên 1 trong 3 số \(n-4,n+2,n+6\) sẽ phải chia hết cho 5.
Nếu số đó là \(n-4\) thì đương nhiên \(n+6=n-4+10⋮5\) và \(n+2=n-4+6⋮̸5\). Vậy F không chia hết cho 125.
Nếu số đó là \(n+6\) thì \(n-4=n+6-10⋮5\) và \(n+2=n+6-4⋮̸5\). Vậy F không chia hết cho 125.
Nếu số đó là \(n+2\) thì \(n-4=n+2-6⋮̸5\) và \(n-4=n+2-6⋮̸5\). Vậy F cũng không chia hết cho 125.
Như vậy số nguyên dương n nhỏ nhất thỏa mãn F chia hết cho 125 là \(n=4\)