Các bạn xem câu này có nghiệm ko và nếu ko có thì chứng minh vô nghiệm giúp mình với:
\(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, x^2 - x - 20 = 0
=> x^2 - 5x + 4x - 20 = 0
=> x(x - 5) + 4(x - 5) = 0
=> (x + 4)(x - 5) = 0
=> x + 4 = 0 hoặc x - 5 = 0
=> x = -4 hoặc x = 5
b, x^3 - 6x^2 + 12x + 19 = 0
=> x^3 + x^2 - 7x^2 - 7x + 19x + 19 = 0
=> x^2(x + 1) - 7x(x + 1) + 19(x + 1) = 0
=> (x^2 - 7x + 19)(x + 1) = 0
x^2 - 7x + 19 > 0
=> x + 1 = 0
=> x = -1
\(a,x^2-x-20=0\)
\(x^2-5x+4x-20=0\)
\(\left(x-5\right)\left(x-4\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}}\)
\(b,x^3-6x^2+12x+19=0\)
\(\left(x^3+x^2\right)-\left(7x^2+7x\right)+\left(19x+19\right)=0\)
\(\left(x+1\right)\left(x^2-7x+19\right)=0\)
Vì \(\left(x^2-7x+19\right)>0\forall x\)
\(x+1=0\)
\(x=-1\)
\(x^3-x^2+x-6=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+3x-6=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^2+x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow x-2=0\) ( Do \(x^2+x+3>0\))
\(\Leftrightarrow x=2\)
Bài này vẫn có nghiệm là 3 và 13. Mình vừa làm mà nhấn nút Hủy :(( Buồn sâu sắc.
Bạn chuyển hết sang 1 vế, quy đồng.
\(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)
\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)
\(\Leftrightarrow\frac{24\left(x-3\right)-4\left(x-3\right)\left(2x-5\right)+6\left(x-3\right)^2}{24}=0\)
\(\Leftrightarrow\left(x-3\right)\left[24-4\left(2x-5\right)+6\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(24-8x+20+6x-18\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(26-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\26-2x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=13\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{3;13\right\}\)