K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

Em hông được đăng những câu hỏi linh tinh lên diễn đàn chj lớp 11 nên hông biết

10 tháng 6 2019

đây đâu phải câu hỏi linh tinh

e chỉ hỏi về tuyển sinh lớp 10 thôi mà

10 tháng 6 2019

Đặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c>0\right)\Rightarrow a+b+c=2\)

Khi đó \(S=\Sigma\sqrt{\frac{\frac{ab}{2}}{\frac{ab}{2}+c}}=\Sigma\sqrt{\frac{ab}{ab+2c}}=\Sigma\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}\)

                                                  \(=\Sigma\sqrt{\frac{ab}{ab+bc+ca+c^2}}=\Sigma\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)

Áp dụng bđt Cô-si có

\(S\le\frac{\Sigma\left(\frac{a}{a+c}+\frac{b}{b+c}\right)}{2}=\frac{3}{2}\)

10 tháng 6 2019

thank đay là đề thi chuyên toán 

10 tháng 6 2019

A= 2016+√(10-(x2​-2x3+32))

= 2016+√(10-(x-3)2)

Để A đạt Max <=> √(10-(x-3)2) Max

Lại có B= 10-(x-3)2 \(\le\)10 . Để B =10 <=> x=3

Vậy x= 3 thì A đạt Max = 2016+√10

Trả lời:

Vậy x = 3

~ Học tốt ~

10 tháng 6 2019

Điều kiện xác định: \(x\ne-1;y\ne1\)

\(\hept{\begin{cases}\frac{x^2}{x+1}+\frac{y^2}{y-1}=4\left(1\right)\\\frac{x+2}{x+1}+\frac{y-2}{y-1}=y-x\left(2\right)\end{cases}}\)

Từ pt (2), ta có: \(\frac{x+2}{x+1}+\frac{y-2}{y-1}=y-x\)

\(\Leftrightarrow1+\frac{1}{x+1}+1-\frac{1}{y-1}-y+x=0\)

\(\Leftrightarrow x+1+\frac{1}{x+1}-\left(y-1+\frac{1}{y-1}\right)=0\)

\(\Leftrightarrow x+1+\frac{1}{x+1}=y-1+\frac{1}{y-1}\)

\(\Leftrightarrow\frac{x^2+2x+2}{x+1}=\frac{y^2-2y+2}{y-1}\)

\(\Leftrightarrow\frac{x^2}{x+1}+\frac{2\left(x+1\right)}{x+1}=\frac{y^2}{y+1}-\frac{2\left(y-1\right)}{y-1}\)

\(\Leftrightarrow\frac{x^2}{x+1}+2=\frac{y^2}{y-1}-2\)

\(\Leftrightarrow\frac{x^2}{x+1}+4-\frac{y^2}{y-1}=0\)(*)

Thay (1) vào (*), ta được: \(\frac{x^2}{x+1}+\frac{x^2}{x+1}+\frac{y^2}{y-1}-\frac{y^2}{y-1}=0\)

\(\Leftrightarrow\frac{2x^2}{x+1}=0\)

\(\Leftrightarrow2x^2=0\)

\(\Leftrightarrow x=0\left(tm\right)\)

Thay x = 0 vào pt (1), ta được: \(\frac{y^2}{y-1}=4\) \(\Leftrightarrow\left(y-2\right)^2=0\) \(\Leftrightarrow y=2\left(tm\right)\)

Vậy: Hệ có nghiệm duy nhất thỏa mãn: \(\left(0;2\right)\)

=.= hk tốt!!

9 tháng 6 2019

Để phương trình đã cho có 2 nghiệm thì \(\Delta^'\ge0\Leftrightarrow3^2-2.\left(m+7\right)\ge0\Leftrightarrow-2m-5\ge0\Leftrightarrow m\le-\frac{5}{2}..\)

Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=3\left(1\right)\\x_1x_2=\frac{m+7}{2}\left(2\right)\end{cases}}\)

Theo đề  ra \(x_1=-2x_2\)Thế vào (1) ta được \(-2x_2+x_2=3\Leftrightarrow x_2=-3\Rightarrow x_1=-2.\left(-3\right)=6\)

Thế \(\hept{\begin{cases}x_1=6\\x_2=-3\end{cases}}\)vào (2) ta có \(6.\left(-3\right)=\frac{m+7}{2}\Leftrightarrow m+7=-36\Leftrightarrow m=-43.\left(tmđk\right)\)

Kết luận ...

9 tháng 6 2019

Ta có \(\Delta^'=\left(m-1\right)^2-\left(m^2+1\right)=m^2-2m+1-m^2-1=-2m.\)

Để phương trình đã cho có 2 nghiệm \(x_1,x_2\)thì \(\Delta^'\ge0\Leftrightarrow-2m\ge0\Leftrightarrow m\le0\)

áp  dụng hệ thức Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2+1\end{cases}}\)

Dễ thấy \(x_1x_2=m^2+1\ge1\Rightarrow x_1,x_2\ne0\forall m\)

Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=4\)\(\Leftrightarrow\frac{x^2_1+x_2^2}{x_1x_2}=4\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=4\)

\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2}{x_1x_2}-2=4\Leftrightarrow\left(x_1+x_2\right)^2=6x_1x_2\)

\(\Leftrightarrow\left(2\left(m-1\right)\right)^2=6\left(m^2+1\right)\Leftrightarrow4m^2-8m+4=6m^2+6\)

\(\Leftrightarrow2m^2+8m+2=0\Leftrightarrow m^2+4m+4=3\Leftrightarrow\left(m+2\right)^2=3\)

\(\Leftrightarrow\orbr{\begin{cases}m+2=\sqrt{3}\\m+2=-\sqrt{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}m=\sqrt{3}-2\left(TMĐK\right)\\m=-\sqrt{3}-2\left(TMĐK\right)\end{cases}.}\)

Vậy..........

9 tháng 6 2019

N là gì bạn ơi?

9 tháng 6 2019

hiểu rồi, t sẽ thử

9 tháng 6 2019

A B C P D R M N E F O

Bốn điểm A,B,D,C cùng nằm trên (O) theo thứ tự đó => ^BAC + ^BDC = 1800

Vì PM // AB, PN // AC nên ^MPN = ^BAC. Do đó ^MPN + ^BDC = 1800 => Tứ giác PMDN nội tiếp

Lúc này, điểm R nằm trên đường tròn ngoại tiếp tứ giác PMDN

=> ^DRP = ^DNP = ^DCA (Bởi PN // AC) = ^DRA. Ta thấy A,P nằm cùng phía so với DR nên RP trùng RA

Hay A,P,R thẳng hàng. Dễ thấy tứ giác AEPF là hình bình hành, suy ra AP chia đôi EF

Vậy nên RP cũng chia đôi EF (đpcm).

9 tháng 6 2019

a) Phương trình hoành độ giao điểm của (d) và (P) là

           \(x^2=\left(m-1\right)x+4\Leftrightarrow x^2-\left(m-1\right)x-4=0\)

Ta có \(\Delta=\left(m-1\right)^2-4.\left(-4\right)=\left(m-1\right)^2+16\)

Vì \(\left(m-1\right)^2\ge0\forall m\Rightarrow\left(m-1\right)^2+16>0\forall m\)hay \(\Delta>0\)

Suy ra phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi giá trị của m

Do đó đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m

(hoặc lập luận cho ac=1.(-4)<0 nên có 2 nghiệm phân biệt ...)

b) Theo chứng minh ý a thì phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt , áp dụng hệ thức Vi-ét:

\(\hept{\begin{cases}x_1+x_2=m-1\\x_1x_2=-4\end{cases}}\)

Khi đó : \(y_1+y_2=y_1.y_2\Leftrightarrow x_1^2+x_2^2=x_1^2.x_2^2\)( có cái này là do parabol P y=x^2)

     \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2\right)^2\Leftrightarrow\left(m-1\right)^2-2.\left(-4\right)=\left(-4\right)^2\)

\(\Leftrightarrow\left(m-1\right)^2=8\Leftrightarrow\orbr{\begin{cases}m-1=2\sqrt{2}\\m-1=-2\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}+1\\m=1-2\sqrt{2}\end{cases}}\)

Vậy...........................

9 tháng 6 2019

a/

hoành độ giao điểm của (d) và ( p ) là nghiệm của phương trình

\(x^2-\left(m-1\right)x-4=0\)

den ta = \(\left(m-1\right)^2+16>0\forall m\)

=> phương trình luôn có 2 nghiệm phân biệt với mọi m

b/

vì \(y_1,y_2\) là tung độ giao điểm của (d ) và ( p ) 

=> \(y_1=x_1^2\)

    \(y_2=x_2^2\)

theo vi - ét có \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-4\end{cases}}\)

ta có \(y_1+y_2=y_1.y_2\)

<=> \(x_1^2+x_2^2=x_1^2x_2^2\)

<=> \(\left(x_2+x_{ }_1\right)^2-2x_1x_2-x_1^2.x_2^2=0\)

<=> \(\left(m-1\right)^2-2.\left(-4\right)-\left(-4\right)^2=0\)

<=> \(m^2-2m+1+8-16=0\)

<=> \(m^2-2m-7=0\)

<=>\(\left(m-1\right)^2-8=0\)

<=> \(\left(m-1\right)^2=8\)

<=> \(m-1=2\sqrt{2}\left(h\right)m-1=-2\sqrt{2}\)

<=> \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)

vậy \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)

CHÚC BẠN HỌC TỐT