Tìm x để biểu thức sau có nghĩa:
a, căn x2-2x+1
b, căn x+3 + căn x+9
c, căn x-1/x+2
d, căn x-2 + 1/x-5
(phần này dấu căn chỉ đến x-2 thôi nhé)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5\sqrt{3}-4=\sqrt{75}-4;3\sqrt{5}=\sqrt{45}\)
\(\left(\sqrt{75}-4\right)^2=71-2\sqrt{75.4}=71-4\sqrt{75}< 71-4\sqrt{64}=71-32=39\)
\(\left(\sqrt{45}\right)^2=45\)
mà 2 số đều dương nên:
\(3\sqrt{5}>5\sqrt{3}-4\)
Tại sao \(\left(\sqrt{75}-4\right)^2\), khi triển khai hằng đẳng thức lại chỉ còn có 71
Do ab là số tự nhiên => Ta có: TH1:a và b là hai số tự nhiên
TH2:a và b là hai số nguyên âm
Mặt khác a+b là số tự nhiên nên ta lại có: +Với TH1(như trên):a+b=số tự nhiên + số tự nhiên =số tự nhiên(hợp lí)
+Với TH2(như trên):a+b=số nguyên âm + số nguyên âm=số tự nhiên(vô lí/loại)
Do a và b đều là số tự nhiên=> an+bn là số tự nhiên
Vậy an+bn là số tự nhiên
\(=\left(\frac{x}{2\sqrt{x}}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\left(\frac{x-1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\left(\frac{x-1}{2\sqrt{x}}\right)\left(\frac{x^2-x\sqrt{x}}{x-1}-\frac{x\sqrt{x}+2x+\sqrt{x}}{x-1}\right)\)
\(=\left(\frac{x-1}{2\sqrt{x}}\right)\left(\frac{x^2-2x\sqrt{x}-2x-\sqrt{x}}{x-1}\right)=\frac{x^2-\sqrt{x}-2x\sqrt{x}-2x}{2\sqrt{x}}=\frac{x\sqrt{x}-1-2x-2\sqrt{x}}{2}\)
\(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{x-1}\)
\(=\frac{x^2-x\sqrt{x}-\left(x\sqrt{x}+x+x+\sqrt{x}\right)}{2\sqrt{x}}\)
\(=\frac{x^2-x\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{2\sqrt{x}}\)
\(=\frac{x^2-2x\sqrt{x}-2x-\sqrt{x}}{2\sqrt{x}}\)
ĐK \(x\ne4;x\ne1\)
D= \(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{2x-5\sqrt{x}}{x-\sqrt{x}-2}-\frac{3}{\sqrt{x}-2}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\frac{2x-5\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x-2}\right)}-\) \(\frac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-2\sqrt{x}-2x+5\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-x-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
CHÚC BN HỌC TỐT
áp dung bđt Bunhiacooxki:
\(A^2=\left(\sqrt{1+\sqrt{x}}+\sqrt{1+\sqrt{1-x}}\right)^2\le\left(1+1\right)\left(1+\sqrt{x}+1+\sqrt{1-x}\right).\)
\(=2\left(2+\sqrt{x}+\sqrt{1-x}\right)\le2\left(2+\sqrt{\left(1+1\right)\left(x+1-x\right)}\right)=2\left(2+\sqrt{2}\right).\)
\(\Rightarrow A\le\sqrt{2\left(2+\sqrt{2}\right)}\)
Vậy max \(A=\sqrt{2\left(2+\sqrt{2}\right)}\Leftrightarrow x=\frac{1}{2}.\)
\(a,\)\(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}\)
\(đkxđ\Leftrightarrow\sqrt{\left(x-1\right)^2}\ge0\)
\(\Rightarrow x-1\ge0\Rightarrow x\ge1\)
\(b,\)\(\sqrt{x+3}+\sqrt{x+9}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+3\ge0\\x+9\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-3\\x\ge-9\end{cases}}}\)
\(\Rightarrow x\ge-3\)
\(c,\)\(\sqrt{\frac{x-1}{x+2}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x+2\ne0\\\frac{x-1}{x+2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\\frac{x-1}{x+2}\ge0\end{cases}}}\)
\(\frac{x-1}{x+2}\ge0\)\(\Rightarrow\orbr{\begin{cases}x-1\ge0;x+2>0\\x-1\le0;x+2< 0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1;x>-2\\x\le1;x< 2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge-1\\x< 2\end{cases}}\)
Vậy căn thức xác định khi x \(\ge\)-1 hoawck x < 2