K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

Bạn rút gọn sai rồi, mình nhìn đề bài b) cho x>2 thì là biết chắc bạn sai , mình làm lại nhé : ( ĐKXĐ : tự làm )

a) \(Q=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\left(\frac{\left(x+2\right)\left(x-2\right)+x+6-x^2}{x\left(x-2\right)}\right)\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\frac{x+2}{x\left(x-2\right)}\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}\cdot\frac{x\left(x-2\right)}{x+2}=\frac{x^2}{x-2}\)

Vậy \(Q=\frac{x^2}{x-2}\)

b) Ta có : \(Q=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)

Do \(x>2\Rightarrow x-2>0\) và \(\frac{4}{x-2}>0\)do đó áp dụng BĐT Cô si cho 2 số dương ta được :

\(x-2+\frac{4}{x-2}\ge2\sqrt{\left(x-2\right).\left(\frac{4}{x-2}\right)}=2\cdot\frac{1}{2}=1\)

\(\Rightarrow Q\ge1+4=5\)

Vậy : GTNN của \(Q=5\)

P/s : Ai vào kiểm tra hộ cái :)) Sợ sai lắm nhé, cảm ơn nha 33

20 tháng 2 2020

Nếu chưa học Cô si thì chứng minh rồi dùng thôi :

Bài này sử dụng Cô - si hai số nên cần chứng minh BĐT :

\(a+b\ge2\sqrt{ab}\left(a,b>0\right)\)

Thật vậy : \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

Do đó \(a+b\ge2\sqrt{ab}\) với a,b >0

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

 Nhân các vế tương ứng của hai phương trình ta được

Giải bài tập trang 57 SGK Đại số 10: Đại cương về phương trình

Phương tình này không tương đương với phương trình nào trong các phương trình đã cho.

Giải bài tập trang 57 SGK Đại số 10: Đại cương về phương trình

b) Phương trình mới cũng không là phương trình hệ quả của một phương trình nào đã cho.

20 tháng 2 2020

Lời giải:
Sử dụng tính chất đường phân giác:

ABAC=BDDC=1520=34(1)ABAC=BDDC=1520=34(1)

Áp dụng định lý Pitago cho tam giác vuông ABCABC:

AB2+AC2=BC2=(BD+DC)2=352=1225(2)AB2+AC2=BC2=(BD+DC)2=352=1225(2)

Từ (1);(2)⇒AB3=AC4⇒AB29=AC216=AB2+AC29+16=122525=49(1);(2)⇒AB3=AC4⇒AB29=AC216=AB2+AC29+16=122525=49

⇒{AB2=49.9AC2=49.16⇒AB=21;AC=28⇒{AB2=49.9AC2=49.16⇒AB=21;AC=28 (cm)

17 tháng 10 2020

tự mà lm

20 tháng 2 2020

Kẻ \(CG\perp EF\)\(BN\perp EF\)\(G,N\in EF\))

Xét tam giác BMN vuông tại N và tam giác CMG vuông tại G có;

                                       BM = CM( M là trung điểm của BC)

                                       \(\widehat{BMN}=\widehat{CMG}\)(đối đỉnh)

                       => \(\Delta BMN=\Delta CMG\)(cạnh huyền - góc nhọn)

                        => BN = CG.

       Gọi P là giao của đường phân giác góc BAC và EF.

           Tam giác AEF có AP vừa là đường phân giác, vừa là đường cao => Tam giác AEF cân tại A.

 => \(\widehat{AEF}=\widehat{AFE}\)mà \(\widehat{AEF}=\widehat{BEN}\)(đối đỉnh) => \(\widehat{BEN}=\widehat{AFE}\).

=> \(90^0-\widehat{BEN}=90^0-\widehat{AFE}\)=> \(\widehat{GCF}=\widehat{NBE}\)

          Xét tam giác GCF vuông tại G và tam giác NBE vuông tại N có:

                                                  BN = CG( chứng minh trên)

                                                  \(\widehat{GCF}=\widehat{NBE}\)(chứng minh trên)

                 => \(\Delta GCF=\Delta NBE\)(cạnh góc vuông - góc nhọn kề) => BE = CF(đpcm)

31 tháng 3 2020

pika pi

20 tháng 2 2020

\(ĐKXĐ:x\ne\pm2\)

\(\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(=\left[\frac{2}{x+2}-\frac{4}{\left(x+2\right)^2}\right]:\left[\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-1}{x-2}\right]\)

\(=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left[\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\right]\)

\(=\frac{2\left(x+2\right)-4}{\left(x+2\right)^2}:\frac{2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)\(=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{2x}{\left(x+2\right)^2}:\frac{-x}{\left(x-2\right)\left(x+2\right)}=\frac{2x}{\left(x+2\right)^2}.\frac{-\left(x-2\right)\left(x+2\right)}{x}\)

\(=\frac{-2\left(x-2\right)}{x+2}\)

20 tháng 2 2020

\(\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(\Leftrightarrow\left(\frac{2}{x+2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{2-x}\right)\)

\(\Leftrightarrow\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2+x+2}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{2x}{\left(x+2\right)^2}\cdot\frac{\left(x-2\right)\left(x+2\right)}{x+4}\)

\(\Leftrightarrow\frac{2x^2-4x}{\left(x+2\right)\left(x+4\right)}\)

20 tháng 2 2020

x^3 - x^2 - 21x + 45 = 0

=>x^3 + 5x^2 - 6x^2 - 30x + 9x + 45 = 0

=>  x^2(x + 5) - 6x(x + 5) + 9(x + 5) = 0

=> (x^2 - 6x + 9)(x + 5) = 0

=> (x - 3)^2(x + 5) = 0

=> x - 3 = 0 hoặc x + 5 = 0

=> x = 3 hoặc x = -5

20 tháng 2 2020

Ta có: x3−x2+x−1=0

x2(x−1)+(x−1)=0

⇔(x−1)(x2+1)=0(1)

Ta có: x2≥0∀x

x2+1≥1≠0∀x(2)

Từ (1) và (2) suy ra x−1=0

x=1Ta có: x3−x2+x−1=0

x2(x−1)+(x−1)=0

⇔(x−1)(x2+1)=0(1)

Ta có: x2≥0∀x

x2+1≥1≠0∀x(2)

Từ (1) và (2) suy ra x−1=0

x=1

20 tháng 2 2020

\(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)   ĐKXD: \(x\ne\pm2,x\ne0,x\ne3\)

\(\Leftrightarrow\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}-\frac{2-x}{2+x}\right):\left(\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\right)\)

\(\Leftrightarrow\left(\frac{4+4x+x^2+4x^2-4+4x-x^2}{\left(2-x\right)\left(2+x\right)}\right):\left(\frac{x-3}{x\left(2-x\right)}\right)\)

\(\Leftrightarrow\left(\frac{4x^2+8x}{\left(2-x\right)\left(2+x\right)}\right)\cdot\left(\frac{x\left(2-x\right)}{x-3}\right)\)

\(\Leftrightarrow\frac{4x\left(x+2\right)}{\left(2-x\right)\left(2+x\right)}\cdot\frac{x\left(2-x\right)}{x-3}\)

\(\Leftrightarrow\frac{4x^2}{x-3}\)

b, Để A>0 thì \(\frac{4x^2}{x-3}>0\)

\(\Rightarrow4x^2>0\)

\(\Rightarrow x>0\)

c, Ta có

\(\left|x-7\right|=4\)

\(\Rightarrow\orbr{\begin{cases}x-7=4\\x-7=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=3\left(l\right)\end{cases}}}\)

 Với \(x=11\Rightarrow\frac{4\cdot11^2}{11-3}=\frac{121}{2}\)