Rút gọn biểu thức
\(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(x\ne4;x\ne1\)
D= \(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{2x-5\sqrt{x}}{x-\sqrt{x}-2}-\frac{3}{\sqrt{x}-2}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\frac{2x-5\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x-2}\right)}-\) \(\frac{3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-2\sqrt{x}-2x+5\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-x-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)
CHÚC BN HỌC TỐT
áp dung bđt Bunhiacooxki:
\(A^2=\left(\sqrt{1+\sqrt{x}}+\sqrt{1+\sqrt{1-x}}\right)^2\le\left(1+1\right)\left(1+\sqrt{x}+1+\sqrt{1-x}\right).\)
\(=2\left(2+\sqrt{x}+\sqrt{1-x}\right)\le2\left(2+\sqrt{\left(1+1\right)\left(x+1-x\right)}\right)=2\left(2+\sqrt{2}\right).\)
\(\Rightarrow A\le\sqrt{2\left(2+\sqrt{2}\right)}\)
Vậy max \(A=\sqrt{2\left(2+\sqrt{2}\right)}\Leftrightarrow x=\frac{1}{2}.\)
Không sai nha, mình có 1 số câu dạng ntn thì có 1 câu giải được theo quy đồng đặt nhân tử chung nhưng cái này thì lười quá không quy đồng, xem các bạn có hướng giải nào nhanh thuận tiện cho dạng này không
ĐKXĐ \(-1\le x\le1,x\ne0\)
Ta có \(\left(1+\sqrt{1-x}\right)\left(1-\sqrt{1-x}\right)=x\)
Nhân liên hợp PT ta được
\(\frac{1+\sqrt{1-x}}{x}-\frac{\sqrt{1+x}-1}{x}=\frac{\sqrt{3}}{x}\)
=> \(\sqrt{1+x}-\sqrt{1-x}=2-\sqrt{3}\)
<=> \(2-2\sqrt{1-x^2}=7-4\sqrt{3}\)với \(x\ge0\)
=> \(\sqrt{1-x^2}=\frac{4\sqrt{3}-5}{2}\)với \(x\ge0\)
=> \(x=\sqrt{1-\left(\frac{4\sqrt{3}-5}{2}\right)^2}\)Thỏa mãn ĐKXĐ
Vậy \(x=\sqrt{1-\left(\frac{4\sqrt{3}-5}{2}\right)^2}\)
\(=\left(\frac{x}{2\sqrt{x}}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\left(\frac{x-1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\left(\frac{x-1}{2\sqrt{x}}\right)\left(\frac{x^2-x\sqrt{x}}{x-1}-\frac{x\sqrt{x}+2x+\sqrt{x}}{x-1}\right)\)
\(=\left(\frac{x-1}{2\sqrt{x}}\right)\left(\frac{x^2-2x\sqrt{x}-2x-\sqrt{x}}{x-1}\right)=\frac{x^2-\sqrt{x}-2x\sqrt{x}-2x}{2\sqrt{x}}=\frac{x\sqrt{x}-1-2x-2\sqrt{x}}{2}\)
\(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\frac{x-1}{2\sqrt{x}}.\frac{x\sqrt{x}\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{x-1}\)
\(=\frac{x^2-x\sqrt{x}-\left(x\sqrt{x}+x+x+\sqrt{x}\right)}{2\sqrt{x}}\)
\(=\frac{x^2-x\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{2\sqrt{x}}\)
\(=\frac{x^2-2x\sqrt{x}-2x-\sqrt{x}}{2\sqrt{x}}\)