1. Cho các số thực dương a, b, c thỏa mãn abc=a+b+c+2.
Tìm giá trị lớn nhất của biểu thức \(P=\dfrac{1}{\sqrt{a^2+b^2}}+\dfrac{1}{\sqrt{b^2+c^2}}+\dfrac{1}{\sqrt{c^2+a^2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì tam giác OAB vuông tại O, theo pytago
OA^2 + OB^2 = AB^2
vì tam giác OAD vuông tại O, theo pytago
OA^2 + OD^2 = AD^2
vì tam giác ODC vuông tại O, theo pytago
OD^2 + OC^2 = DC^2
vì tam giác OBC vuông tại O, theo pytago
OB^2 + OC^2 = BC^2
cộng vế với vế của từng đẳng thức trên ta được
AB^2 + BC^2 + CD^2 + DA^2 = 2(OA^2 + OB^2 + OC^2 + OD^2)
vì tam giác OAB vuông tại O, theo pytago
OA^2 + OB^2 = AB^2
vì tam giác OAD vuông tại O, theo pytago
OA^2 + OD^2 = AD^2
vì tam giác ODC vuông tại O, theo pytago
OD^2 + OC^2 = DC^2
vì tam giác OBC vuông tại O, theo pytago
OB^2 + OC^2 = BC^2
cộng vế với vế của từng đẳng thức trên ta được
AB^2 + BC^2 + CD^2 + DA^2 = 2(OA^2 + OB^2 + OC^2 + OD^2)
a) Để biểu thức trên có nghĩa thì:
1-4x\(\ge\)0<=>x\(\le\)\(\frac{1}{4}\)
b) Để biểu thức trên có nghĩa thì:
\(\hept{\begin{cases}2x+1\ge0\\3-4x\ne0\end{cases}}\)<=>\(\hept{\begin{cases}x\ge\frac{-1}{2}\\x\ne\frac{3}{4}\end{cases}}\)
c) Để biểu thức trên có nghĩa thì:
2x-2\(\ne\)0 <=>x\(\ne\)1
d) Để biểu thức trên có nghĩa thì:
\(\hept{\begin{cases}4x+2\ne0\\1+3x\ge0\end{cases}}\)<=>\(\hept{\begin{cases}x\ne\frac{-1}{2}\\x\ge\frac{-1}{3}\end{cases}}\)<=>x\(\ge\)\(\frac{-1}{3}\)
a/ \(\sqrt{\left(\frac{1}{\sqrt{2}}-\frac{1}{2}\right)^2}=\) \(|\frac{1}{\sqrt{2}}-\frac{1}{2}|\)
\(=|\frac{\sqrt{2}-1}{2}|\)
\(=\frac{\sqrt{2}-1}{2}\)
các câu còn lại tương tự nha
chúc bn học tốt
Em đã học tứ giác nội tiếp chưa? Nếu học rồi áp dụng nó sẽ nhanh hơn.
Gọi H là trực tâm tam giác ABC.
+) Ta có: AM//NH ( cùng vuông góc với AB)
AN// MH ( cùng vuông góc với AC)
=> AMHN là hình bình hành
Gọi O là giao điểm của AH và MN
=> O là trung điểm AH
+) Xét tứ giác BFHD có: \(\widehat{FBD}+\widehat{FHD}+\widehat{BFH}+\widehat{BDH}=360^o\)
=> \(\widehat{FBD}+\widehat{FHD}+90^o+90^o=360^o\)
=> \(\widehat{FBD}+\widehat{FHD}=180^o\)
Mà \(\widehat{FHD}+\widehat{FHA}=180^o\)( kề bù)
=> \(\widehat{FBD}=\widehat{FHA}\)
Mặt khác\(\widehat{FHA}=\widehat{HAM}\) ( so le trong)
=> \(\widehat{FBD}=\widehat{HAM}\)
=> \(\widehat{ABC}=\widehat{HAM}\)(1)
Xét tứ giác HDCE có:
\(\widehat{DCE}+\widehat{DHE}+\widehat{HDC}+\widehat{HEC}=360^o\)
=> \(\widehat{DCE}+\widehat{DHE}+90^o+90^o=360^o\)
=> \(\widehat{DCE}+\widehat{DHE}=180^o\)
Mà \(\widehat{AHM}+\widehat{EHD}=180^o\)( kề bù)
=> \(\widehat{AHM}=\widehat{DCE}\Rightarrow\widehat{AHM}=\widehat{ACB}\)(2)
Từ (1), (2) => Tam giác MAH ~ Tam giác ABC
=> \(\frac{MA}{AH}=\frac{AB}{BC}\Rightarrow\frac{MA}{2.AO}=\frac{AB}{2BI}\Rightarrow\frac{MA}{AO}=\frac{AB}{AI}\)(3)
Từ (1), (3)=> Tam giác MAO ~ tam giác ABI
=> \(\widehat{OMA}=\widehat{IAB}\)
Ta lại có: \(\widehat{IAB}+\widehat{IAM}=\widehat{BAM}=90^o\)
=> \(\widehat{OMA}+\widehat{IAM}=90^o\)
Gọi K là giao điểm của MN và AI
=> \(\widehat{KMA}+\widehat{KAM}=90^o\)
=> \(\widehat{AKM}=90^o\)
=> AI vuông MN
cái chỗ \(\frac{MA}{2AO}\)= \(\frac{AB}{2BI}\)\(\Rightarrow\frac{MA}{AO}=\frac{AB}{AI}\)
Nhg \(\frac{MA}{2AO}\) = \(\frac{AB}{2BI}\)\(\Rightarrow\frac{MA}{AO}=\frac{AB}{BI}\)
#MÃ MÃ#
ĐKXĐ: \(-2\le x\le2.\)
\(\sqrt{9x^2+16}=2\sqrt{2x+4}+4\sqrt{2-x}.\)
\(\Leftrightarrow9x^2+16=4\left(2x+4\right)+16\left(2-x\right)+2.2\sqrt{2x+\text{4}}.4\sqrt{2-x}\)(vì cả 2 vế của phương trình đều >0)
\(\Leftrightarrow9x^2+8x-32=16\sqrt{2\left(x+2\right)\left(2-x\right)}.\)
\(\Rightarrow\left(9x^2+8x-32\right)^2=-512\left(x^2-4\right).\)
\(\Leftrightarrow81x^4+144x^3-512x-1024=0\)
\(\Leftrightarrow\left(81x^4+144x^3+288x^2\right)+\left(-288x^2-512x-1024\right)=0\)
\(\Leftrightarrow\left(9x^2\right)\left(9x^2+16x+32\right)-32\left(9x^2+16x+32\right)=0\)
\(\Leftrightarrow\left(9x^2-32\right)\left(9x^2+16x+32\right)=0\)
Mà \(9x^2+16x+32=9\left(x+\frac{8}{9}\right)^2+\frac{224}{9}>0\)
Suy ra \(9x^2-32=0\Leftrightarrow x^2=\frac{32}{9}\Leftrightarrow x=\mp\frac{4\sqrt{2}}{3}.\)
Thử lại ta thấy \(x=\frac{4\sqrt{2}}{3}\)thỏa mãn .
Vậy phương trình đã cho có nghiệm duy nhất là \(x=\frac{4\sqrt{2}}{3}.\)
Phương trình đã cho có nghiệm duy nhất là \(x\frac{4\sqrt{2}}{3}\)
Chúc bạn học tốt ! k cho mình nhé.
Ta có:
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}\)
\(=\sqrt{\frac{1}{4}\left(2x-1\right)^2+\frac{75}{4}}+\sqrt{\left(2x-1\right)^2+3\left(x+2\right)^2}+\sqrt{\frac{1}{4}\left(2x-1\right)^2+\frac{3}{4}\left(4x+3\right)^2}\)
\(\ge\sqrt{\frac{75}{4}}+\sqrt{3\left(x+2\right)^2}+\sqrt{\frac{3}{4}\left(4x+3\right)^2}\)
\(=\frac{5\sqrt{3}}{2}+\sqrt{3}\left(x+2\right)+\frac{\sqrt{3}\left(4x+3\right)}{2}=3\sqrt{3}\left(x+2\right)\)
Dấu = xảy ra khi ....
Sửa đề:
\(\sqrt[3]{3x^2-x+2012}-\sqrt[3]{3x^2-6x+2013}-\sqrt[5]{5x-2014}=\sqrt[3]{2013}\)
Đặt \(\sqrt[3]{3x^2-x+2012}=a;\sqrt[3]{3x^2-6x+2013}=b;\sqrt[5]{5x-2014}=c\)
\(\Rightarrow a-b-c=\sqrt[3]{2013}\)
Ta lại có:
\(a^3-b^3-c^3=2013=\left(a-b-c\right)^3\)
\(\Leftrightarrow\left(a-b\right)\left(a-c\right)\left(b+c\right)=0\)
Làm nốt
Dự đoán xảy ra cực trị khi a = b = c =2. Khi đó P =\(\frac{3\sqrt{2}}{4}\). Ta sẽ chứng minh đó là MAX của P
Ta có: \(\left(\frac{a+b+c}{3}\right)^3-\left(a+b+c\right)\ge abc-\left(a+b+c\right)=2\)
Đặt a + b +c = t>0 suy ra \(\frac{t^3-27t}{27}\ge2\Leftrightarrow t^3-27t\ge54\Leftrightarrow t^3-27t-54\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}t\ge6\\t=-3\left(L\right)\end{cases}}\). Do vậy \(t\ge6\) (em làm tắt xiu nhé,dài quá)
\(P=\Sigma_{cyc}\frac{2}{\sqrt{2}.\sqrt{2\left(a^2+b^2\right)}}\le\sqrt{2}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
Giờ đi chứng minh \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{3}{4}\)
Em cần suy ra nghĩ tiếp:(
suy ra -> suy nghĩ giúp em ạ!
_tth_