\(\left(3x+1\right)\sqrt{2x^2-1}=5x^2+\frac{3x}{2}-3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ \(x\ge\frac{1}{2}\)
Đặt \(\sqrt{x^2+2x}=a,\sqrt{2x-1}=b\left(a,b\ge0\right)\)
=> \(3a^2-b^2=3x^2+4x+1\)
Khi đó PT <=>
\(a+b=\sqrt{3a^2-b^2}\)
=> \(a^2+2ab+b^2=3a^2-b^2\)
=> \(a^2-ab-b^2=0\)
=> \(a=\frac{1+\sqrt{5}}{2}.b\)
=> \(x^2+2x=\frac{6+2\sqrt{5}}{4}.\left(2x-1\right)\)
=> \(x=\frac{1+\sqrt{5}}{2}\)thỏa mãn ĐKXĐ
Vậy \(x=\frac{1+\sqrt{5}}{2}\)
https://h.vn/hoi-dap/tim-kiem?q=Cho+h%C3%ACnh+vu%C3%B4ng+ABCD+c%C3%B3+M+v%C3%A0+N+theo+th%E1%BB%A9+t%E1%BB%B1+l%C3%A0+trung+%C4%91i%E1%BB%83m+c%E1%BB%A7a+c%C3%A1c+c%E1%BA%A1nh+AB+v%C3%A0+BC,+n%E1%BB%91i+DN+c%E1%BA%AFt+CM+t%E1%BA%A1i+I.++a)+ch%E1%BB%A9ng+minh:+CI.CM=CN.CB++b)+ch%E1%BB%A9ng+minh+DI=4IN++c)+K%E1%BA%BB+tia+AH+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+DN+t%E1%BA%A1i+H+c%E1%BA%AFt+CD+t%E1%BA%A1i+P.+Cho+AB=a.+T%C3%ADnh+di%E1%BB%87n+t%C3%ADch+t%E1%BB%A9+gi%C3%A1c+HICP&id=512186
Xem tại link này(mik gửi cho)
Học tốt!!!!!!!!!!
P/s : có hình
Áp dụng bđt Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\) ta được
\(VT\ge\sqrt{\left(x+y\right)^2+\left(\frac{1}{x}+\frac{1}{y}\right)^2}+\sqrt{z^2+\frac{1}{z^2}}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
Áp dụng bđt Cô-si có
\(\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge9\sqrt[3]{\left(xyz\right)^2}+\frac{9}{\sqrt[3]{\left(xyz\right)^2}}\)
Đặt \(\sqrt[3]{\left(xyz\right)^2}=t\)
\(\Rightarrow0\le t=\sqrt[3]{\left(xyz\right)^2}\le\left(\frac{x+y+z}{3}\right)^2=\frac{1}{4}\)
Khi đó \(VT\ge\sqrt{9t+\frac{9}{t}}=\sqrt{3\left(48t+\frac{3}{t}-45t\right)}\ge\sqrt{3\left(2.\sqrt{3.48}-\frac{45}{4}\right)}=\frac{3\sqrt{17}}{2}\)
\(PT\Leftrightarrow x^2-\sqrt{2}\left(x^2+2x-1\right)=0\)
Đề có nhầm không????
Học tốt!!!!!!!!!!!!!!
\(B=\sqrt{x-4\sqrt{x}+4}+\sqrt{x-6\sqrt{x}+9}\)
\(=\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}\)
\(=\left|\sqrt{x}-2\right|+\left|3-\sqrt{x}\right|\ge\left|\sqrt{x}-2+3-\sqrt{x}\right|=1\)
Dấu "=" <=> 4 < x < 9
a, \(A=x^2-x\sqrt{y}-2x\sqrt{y}+2y\)
\(=x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)
\(=\left(x-2\sqrt{y}\right)\left(x-\sqrt{y}\right)\)
\(a,\)\(A=x^2-3x\sqrt{y}+2y\)
\(=x^2-2x\sqrt{y}-x\sqrt{y}+2y\)
\(=x\left(x-2\sqrt{y}\right)-\sqrt{y}\left(x-2\sqrt{y}\right)\)
\(=\left(x-\sqrt{y}\right)\left(x-2\sqrt{y}\right)\)
\(b,\)Ta có : \(x=\frac{1}{\sqrt{5}-2}=\frac{\sqrt{5}+2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}=\frac{\sqrt{5}+2}{5-4}=\sqrt{5}+2\)
\(y=\frac{1}{9+4\sqrt{5}}=\frac{9-4\sqrt{5}}{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}=\frac{9-4\sqrt{5}}{81-80}=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)
\(\Rightarrow A=\left[\sqrt{5}+2-\sqrt{\left(\sqrt{5}-2\right)^2}\right]\left[\sqrt{5}+2-2\sqrt{\left(\sqrt{5}-2\right)^2}\right]\)
\(=\left(\sqrt{5}+2-\sqrt{5}-2\right)\left(\sqrt{5}+2-2\sqrt{5}+4\right)\)
\(=4\left(6-\sqrt{5}\right)\)
\(=24-4\sqrt{5}\)
ĐKXĐ \(2x^2-1\ge0\)
PT <=> \(10x^2+3x-6=2\left(3x+1\right)\sqrt{2x^2-1}\)
<=> \(\left(3x+1\right)\left(x+2-2\sqrt{2x^2-1}\right)+7x^2-4x-8=0\)
<=> \(\left(3x+1\right).\frac{\left(x+2\right)^2-4\left(2x^2-1\right)}{x+2+2\sqrt{2x^2-1}}+7x^2-4x-8=0\)
<=> \(\left(3x+1\right).\frac{-7x^2+4x+8}{x+2+2\sqrt{2x^2-1}}+7x^2-4x-8=0\)
<=> \(\orbr{\begin{cases}-7x^2+4x+8=0\left(1\right)\\3x+1=x+2+2\sqrt{2x^2-1}\left(2\right)\end{cases}}\)
Giải (2)
\(2x-1=2\sqrt{2x^2-1}\)
<=> \(4x^2+4x-5=0\)với \(x\ge\frac{1}{2}\)
=> \(x=\frac{-1+\sqrt{6}}{2}\)
GIải (1)
\(x=\frac{2\pm2\sqrt{15}}{7}\)thỏa mãn ĐKXĐ
Vậy \(S=\left\{\frac{2\pm2\sqrt{15}}{7},\frac{-1+\sqrt{6}}{2}\right\}\)