K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

a) \(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}\)

\(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}=\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}=\sqrt{6-2\left(1+\sqrt{3}\right)}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=1+\sqrt{3}\)

b) Tương tự a) đ/s =5

23 tháng 6 2019

Đặt bt là A

\(A\sqrt{2}=\left(2-\sqrt{3}\right)\sqrt{52+30\sqrt{3}}-\left(2+\sqrt{3}\right)\sqrt{52-30\sqrt{3}}\)

\(=\left(2-\sqrt{3}\right)\sqrt{\left(3\sqrt{3}+5\right)^2}-\left(2+\sqrt{3}\right)\sqrt{\left(3\sqrt{3}-5\right)^2}\)\(=\left(2-\sqrt{3}\right)\left(3\sqrt{3}+5\right)-\left(2+\sqrt{3}\right)\left(3\sqrt{3}-5\right)\)

khai triển hết ra ta đc \(A\sqrt{2}=2\Rightarrow A=\sqrt{2}\)

23 tháng 6 2019

Đkxđ: \(\hept{\begin{cases}x\ge-\frac{1}{4}\\y\ge2\end{cases}}\)

\(\Leftrightarrow2+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=y\Leftrightarrow2+\frac{1}{2}+\sqrt{x+\frac{1}{2}}=y\Leftrightarrow\sqrt{x+\frac{1}{2}}+\frac{5}{2}=y\)

do x,y nguyên dương nên \(\sqrt{x+\frac{1}{2}}+\frac{5}{2}\)nguyên dương\(\Leftrightarrow\sqrt{x+\frac{1}{2}}=\frac{k}{2}\)(K là số nguyên lẻ, \(k>1\))

\(\Rightarrow x=\frac{k^2-2}{4}\)

do \(k^2\)là số chính phương chia 4 dư 0,1 \(\Rightarrow x=\frac{k^2-2}{4}\notin Z\)

=> ko tồn tại cặp số nguyên dương x,y tmđkđb

\(PT\Leftrightarrow9x^2+16x+96=9x^2+256y^2+576-96xy+768y-144x.\)

\(\Leftrightarrow256y^2-160x-96xy+768y+480=0\)

\(\Leftrightarrow8y^2-5x-3xy+24y+15=0\)

Đến chỗ này phân tích kiểu j được nhỉ

ĐK \(x\ge\frac{-10}{3}\)

Đặt \(\sqrt{3x+1}=a\)

\(PT\Leftrightarrow\frac{3}{\sqrt{a^2+9}}=a-1\)

\(\Leftrightarrow\sqrt{a^2+9}=\frac{3}{a-1}\Leftrightarrow a^2+9=\frac{9}{\left(a-1\right)^2}\)

\(\Leftrightarrow\left(a^2+9\right)\left(a-1\right)^2=9\)                 (hình như đề sai hay thiếu phải không)????????????????

Áp dụng bất đẳng thức \(\sqrt{a}-\sqrt{b}\le\sqrt{a-b}\) ( với \(a\ge b\ge0\))

Ta có : \(\sqrt{x+3}-\sqrt{x-5}\le\sqrt{\left(x+3\right)-\left(x-5\right)}\)\(=\sqrt{8}=2\sqrt{2}\)

Dấu bằng xảy ra khi x=5

Vậy giá trị lớn nhất của A là \(2\sqrt{2}\)khi x=5

23 tháng 6 2019

\(\frac{x}{1+x^2}=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}=\frac{\frac{1}{x}}{\frac{1}{x^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}}=\frac{\frac{1}{x}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{z}+\frac{1}{x}\right)}\)

\(=\frac{xyz}{xy\left(\frac{1}{x}+\frac{1}{y}\right)zx\left(\frac{1}{z}+\frac{1}{x}\right)}=\frac{xyz}{\left(x+y\right)\left(z+x\right)}\)

Tương tự, ta cũng có: \(\frac{2y}{1+y^2}=\frac{2xyz}{\left(x+y\right)\left(y+z\right)}\)\(;\)\(\frac{3z}{1+z^2}=\frac{3xyz}{\left(y+z\right)\left(z+x\right)}\)

\(VT=\frac{xyz}{\left(x+y\right)\left(z+x\right)}+\frac{2xyz}{\left(x+y\right)\left(y+z\right)}+\frac{3xyz}{\left(y+z\right)\left(z+x\right)}\)

\(=\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) ( đpcm )