K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2019

Sửa đề lại cho đúng nhé : 

\(\sqrt{12x^2-17x+5}=\sqrt{12x^2-12x-5x+5}\)

\(=\)\(\sqrt{12x\left(x-1\right)-5\left(x-1\right)}=\sqrt{\left(x-1\right)\left(12x-5\right)}\)

\(btxđ\Leftrightarrow\left(x-1\right)\left(12x-5\right)\ge0\)

\(\Rightarrow\orbr{\begin{cases}x-1\ge0;12x-5\ge0\\x-1< 0;12x-5< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\ge1;x\le\frac{12}{5}\left(tm\right)\\x< 1;x>\frac{12}{5}\left(ktm\right)\end{cases}}\)

\(\Rightarrow1\le x\le\frac{12}{5}\)

21 tháng 6 2019

hình như ko phải \(\frac{12}{5}\)mà là \(\frac{5}{12}\)

21 tháng 6 2019

Anh ơi mik mấy bài toán khó như thế này mik tham khảo trên H.vn nhé

21 tháng 6 2019

Toán lớp 9 của bn hơi khó , có gì bn lên lazi,vn hoặc hoc.24.vn để hỏi nha 
~ Hok tốt ~
#Smash 

Câu 19 , Đăk Lắk Cho các số thực dương x ; y ; z thỏa mãn \(x+2y+3z=2\)Tìm \(S_{max}=\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{3yz}{3yz+x}}+\sqrt{\frac{3xz}{3xz+4y}}\)                                 GiảiĐặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c\right)>0\Rightarrow a+b+c=2\)Khi đó \(S=\sqrt{\frac{a.\frac{b}{2}}{a.\frac{b}{2}+c}}+\sqrt{\frac{\frac{b}{2}.c}{\frac{b}{2}.c+a}}+\sqrt{\frac{a.c}{a.c+2b}}\)             ...
Đọc tiếp

Câu 19 , Đăk Lắk 

Cho các số thực dương x ; y ; z thỏa mãn \(x+2y+3z=2\)

Tìm \(S_{max}=\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{3yz}{3yz+x}}+\sqrt{\frac{3xz}{3xz+4y}}\)

                                 Giải

Đặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c\right)>0\Rightarrow a+b+c=2\)

Khi đó \(S=\sqrt{\frac{a.\frac{b}{2}}{a.\frac{b}{2}+c}}+\sqrt{\frac{\frac{b}{2}.c}{\frac{b}{2}.c+a}}+\sqrt{\frac{a.c}{a.c+2b}}\)

               \(=\sqrt{\frac{ab}{ab+2c}}+\sqrt{\frac{bc}{bc+2a}}+\sqrt{\frac{ac}{ac+2b}}\)

               \(=\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}+\sqrt{\frac{bc}{bc+\left(a+b+c\right)a}}+\sqrt{\frac{ac}{ac+\left(a+b+c\right)b}}\)

              \(=\sqrt{\frac{ab}{ab+ac+bc+c^2}}+\sqrt{\frac{bc}{bc+a^2+ab+ac}}+\sqrt{\frac{ac}{ac+ab+b^2+bc}}\)

             \(=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ac}{\left(a+b\right)\left(b+c\right)}}\)

            \(\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}+\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}+\frac{\frac{a}{a+b}+\frac{c}{b+c}}{2}\left(Cauchy\right)\)

             \(=\frac{1}{2}\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\frac{1}{2}\left(\frac{b}{b+c}+\frac{c}{b+c}\right)+\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{a+b}\right)\)

             \(=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)

Dấu "=" tại a = b = c

20, Thanh hóa

Cho a;b;c > 0 thỏa abc = 1

CMR \(\frac{ab}{a^4+b^4+ab}+\frac{bc}{b^4+c^4+bc}+\frac{ac}{a^4+c^4+ac}\le1\)

                                   Giải

Áp dụng bất đẳng thức Bunhiacopxki có

\(\left(a^2+b^2\right)^2\le\left(1+1\right)\left(a^4+b^4\right)\)

\(\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}=\frac{\left(a^2+b^2\right)\left(a^2+b^2\right)}{2}\ge\frac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)\)

\(\Rightarrow a^4+b^4\ge ab\left(a^2+b^2\right)\)

Khi đó \(\frac{ab}{a^4+b^4+ab}\le\frac{ab}{ab\left(a^2+b^2\right)+ab}=\frac{1}{a^2+b^2+1}\)

Chứng minh tương tự \(\frac{bc}{b^4+c^4+bc}\le\frac{1}{b^2+c^2+1}\)

                                   \(\frac{ac}{a^4+c^4+ac}\le\frac{1}{a^2+c^2+1}\)

Khi đó \(VT\le\frac{1}{a^2+b^2+1}+\frac{1}{b^2+c^2+1}+\frac{1}{a^2+c^2+1}=A\)

Ta sẽ chứng minh A < 1

Thật  vậy

Đặt \(\left(a^2;b^2;c^2\right)\rightarrow\left(x^3;y^3;z^3\right)\)

\(\Rightarrow xyz=1\)

Khi đó \(A=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\)

Áp dụng bđt Cô-si có \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow x^3+y^3\ge\left(x+y\right)xy\)

\(\Rightarrow x^3+y^3+1\ge\left(x+y\right)xy+1=\left(x+y\right)xy+xyz=xy\left(x+y+z\right)\)

\(\Rightarrow\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}=\frac{xyz}{xy\left(x+y+z\right)}=\frac{z}{x+y+z}\)

Chứng minh tương tự \(\frac{1}{y^3+z^3+1}\le\frac{x}{x+y+z}\)

                                    \(\frac{1}{x^3+z^3+1}\le\frac{z}{x+y+z}\)

Khi đó \(A\le\frac{x+y+z}{x+y+z}=1\left(đpcm\right)\)

Dấu "=" tại x = y = z = 1

Đang trong quá trình cập nhật những câu tiếp theo , những câu tiếp theo sẽ ở trong phần bình luận

3
21 tháng 6 2019

34, Quảng Ninh

Cho x;y;z > 0 thỏa mãn x + y + z < 1

Tìm GTNN của biểu thức \(P=\frac{1}{x^2+y^2+z^2}+\frac{2019}{xy+yz+zx}\)

Ta có bđt sau : \(\frac{m^2}{a}+\frac{n^2}{b}\ge\frac{\left(m+n\right)^2}{a+b}\left(a;b>0\right)\)

Áp dụng ta được \(P=\frac{1}{x^2+y^2+z^2}+\frac{2019}{xy+yz+zx}\)

                                \(=\frac{1}{x^2+y^2+z^2}+\frac{4}{2\left(xy+yz+zx\right)}+\frac{2017}{xy+yz+zx}\)

                                \(\ge\frac{\left(1+2\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}+\frac{2017}{\frac{\left(x+y+z\right)^2}{3}}\)

                               \(=\frac{9}{\left(x+y+z\right)^2}+\frac{6051}{\left(x+y+z\right)^2}\)

                                \(=\frac{6060}{\left(x+y+z\right)^2}\ge\frac{6060}{1}=6060\)

Dấu "=" tại x = y = z = 1/3

21 tháng 6 2019

39, Chuyên Hưng Yên

Với x;y là các số thực thỏa mãn \(\left(x+2\right)\left(y-1\right)=\frac{9}{4}\)

Tìm \(A_{min}=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

Ta có \(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)

              \(=\sqrt{\left(x+1\right)^4+1}+\sqrt{\left(y-2\right)^4+1}\)

Đặt  \(\hept{\begin{cases}x+1=a\\y-2=b\end{cases}}\)

Thì \(A=\sqrt{a^4+1}+\sqrt{b^4+1}\)và giả thiết đã cho trở thành \(\left(a+1\right)\left(b+1\right)=\frac{9}{2}\)

Ta có bất đẳng thức \(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)(1)

Thật vậy

 \(\left(1\right)\Leftrightarrow x^2+y^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}+z^2+t^2\ge x^2+2xz+z^2+y^2+2yt+t^2\)

         \(\Leftrightarrow\sqrt{x^2z^2+x^2t^2+y^2z^2+y^2t^2}\ge xz+yt\)

*Nếu xz + yt < 0 thì bđt luôn đúng

*Nếu xz + yt > 0 thì bđt tương đương với

\(x^2z^2+x^2t^2+y^2z^2+y^2t^2\ge x^2z^2+2xyzt+y^2t^2\)

 \(\Leftrightarrow x^2t^2-2xyzt+y^2z^2\ge0\)

\(\Leftrightarrow\left(xt-yz\right)^2\ge0\)(Luôn đúng)

Vậy bđt (1) được chứng minh

Áp dụng (1) ta được \(A=\sqrt{a^4+1}+\sqrt{b^4+1}\ge\sqrt{\left(a^2+b^2\right)^2+\left(1+1\right)^2}\)

                                                                                              \(=\sqrt{\left(a^2+b^2\right)^2+4}\)

Ta có \(\left(a+1\right)\left(b+1\right)=\frac{9}{4}\)

\(\Leftrightarrow ab+a+b+1=\frac{9}{4}\)

\(\Leftrightarrow ab+a+b=\frac{5}{4}\)

Áp dụng bđt Cô-si có \(a^2+b^2\ge2ab\)

                                   \(2\left(a^2+\frac{1}{4}\right)\ge2a\)

                                  \(2\left(b^2+\frac{1}{4}\right)\ge2b\)

Cộng 3 vế vào được

\(3\left(a^2+b^2\right)+1\ge2\left(ab+a+b\right)=\frac{5}{2}\)

\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)

Khi đó \(A\ge\sqrt{\left(a^2+b^2\right)^2+4}\ge\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{3}\)

Dấu ''=" tại \(\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x+1=\frac{1}{2}\\y-2=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{5}{2}\end{cases}}\)

21 tháng 6 2019

Chị gì gì ơi những bài toán khó như vậy chị nên đăng trên H.VN 

Ở đó học sinh lớp 9,10,8,7 sẽ giúp cho 

21 tháng 6 2019

Ta có \(\Delta'=\left(m-1\right)^2-2m+5\ge0\)

=> \(m^2-4m+6\ge0\)luôn đúng

Theo vi-et ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{cases}}\)

Khi đó 

\(P=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2\)

   \(=\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right)^2-2\)

   \(=\left(\frac{4\left(m-1\right)^2}{2m-5}-2\right)^2-2\)

     \(=\left(\frac{4m^2-10m+2m-5+9}{2m-5}-2\right)^2-2\)

   \(=\left(2m+1+\frac{9}{2m-5}-2\right)^2-2\)

    \(=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)

Để P là số nguyên

=> \(\frac{9}{2m-5}\)là số nguyên

=> \(2m-5\in\left\{\pm1;\pm3;\pm9\right\}\)

=> \(m\in\left\{-2;1;2;3;4;7\right\}\)

Kết hợp với ĐK 

=> \(m\in\left\{1;2;3;4;7\right\}\)

Vậy \(m\in\left\{1;2;3;4;7\right\}\)

Giúp mình làm các câu hỏi này nha: (càng nhiều càng tốt!)1. Tiffany and Ryan deposit some amount in a joint bank account such that total balance remains 500. If  amount deposited by Tiffany and Ryan are plotted as a linear graph on xy plane, find the area between this graph and the coordinate axis.2.A group of workers is paving a road. If they pave 200m of the road a day, they will need 3 more days. to finish the work. If they pave 240m of the road a day, they will finish the work...
Đọc tiếp

Giúp mình làm các câu hỏi này nha: (càng nhiều càng tốt!)

1. Tiffany and Ryan deposit some amount in a joint bank account such that total balance remains 500. If  amount deposited by Tiffany and Ryan are plotted as a linear graph on xy plane, find the area between this graph and the coordinate axis.

2.A group of workers is paving a road. If they pave 200m of the road a day, they will need 3 more days. to finish the work. If they pave 240m of the road a day, they will finish the work 2 days in advance. How long is the road, in meter?

3. Mrs. Darlie has a silver ring, a golden ring and a diamond ring. She put them on her left hand. Each ring can be on any of the five fingers. When there are two or three rings on the same finger, if the order in which they are put is different, that couunt as a different way. How many different ways for Lea to put these rings?

4. Let P(x) be a polynomial with degree 3 such that P(1)=3, P(2)=3, P(3)=7, P(4)=21. Find the value of P(5).

1

4. Call that polynomial P (x) = ax3 + bx2 + cx + d

We have P(1)=a+b+c+d=3   (1)

P(2)=8a+4b+2c+d=3   (2)

P(3)=27a+9b+3c+d  =7       (3) 

P(4)=64a+16b+4c+d     =21    (4)

From (1) and  (2) =>  7a+3b+c=0

From (1) and  (4)  => 63a+15b+3c=18

=> 12b+6c=-18  => 2b+c=-3

From (1) and  (3) =>26a+8b+2c=4=> 13a+4b+c=2

=> 13a+2b=5

It is possible

21 tháng 6 2019

Theo em những bài toán khó lớp 9 hay lớp 10 mik mang lên H.VN nhé OLM ít ng trl lắm ạ