Cho tam giác ABC cân tại A. Điểm O thỏa mãn góc ABO=ACO=90 độ. K đối xứng với C qua O. Qua K kẻ đường thẳng vuông góc với KC, cắt BC tại I. Chứng minh AK vuông góc với OI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\)\(\frac{\left(2-\sqrt{x}\right)^2-\left(\sqrt{x}+3\right)}{1+2\sqrt{x}}=\frac{4-4\sqrt{x}+x-\sqrt{x}-3}{1+2\sqrt{x}}.\)\(=\frac{x-5\sqrt{x}+1}{1+2\sqrt{x}}\)
\(b,\frac{\left(\sqrt{x}+1\right)\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right)\left(\sqrt{x^3+x}\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\sqrt{x}\left(x-y\right)}{\left(x-y\right)\sqrt{x}\left(\sqrt{x^2+1}\right)}=\frac{\sqrt{x}+1}{\sqrt{x^2+1}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x+\sqrt{xy}}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}.\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)^2}{x-y}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\sqrt{13+6\sqrt{4+\sqrt{9-4\sqrt{2}}}}\)
\(=\sqrt{13+6\sqrt{4+\sqrt{1-2.2\sqrt{2}+\left(2\sqrt{2}\right)^2}}}\)
\(=\sqrt{13+6\sqrt{4+\sqrt{\left(2\sqrt{2}-1\right)^2}}}\)
\(=\sqrt{13+6\sqrt{4+2\sqrt{2}-1}}\)
\(=\sqrt{13+6\sqrt{3+2\sqrt{2}}}\)
\(=\sqrt{13+6\sqrt{1+2\sqrt{2}+2}}\)
\(=\sqrt{13+6\sqrt{\left(1+\sqrt{2}\right)^2}}\)
\(=\sqrt{13+6\left(1+\sqrt{2}\right)}=\sqrt{13+6+\sqrt{12}}\)
\(=\sqrt{19+2\sqrt{3}}\)
a) = \(\sqrt{13+6\sqrt{4+\sqrt{9-4\sqrt{2}}}}\)
= \(\sqrt{13+6\sqrt{4+\sqrt{8-2.2\sqrt{2}+1}}}\)
= \(\sqrt{13+6\sqrt{4+\sqrt{\left(2\sqrt{2}-1\right)^2}}}\)
= \(\sqrt{13+6\sqrt{4+2\sqrt{2}-1}}\)
= \(\sqrt{13+6\sqrt{2+2\sqrt{2}+1}}\)
= \(\sqrt{13+6\left(\sqrt{2}+1\right)}\)
= \(\sqrt{13+6\sqrt{2}+6}=\sqrt{19+6\sqrt{2}}\)
= \(\sqrt{18+2.3\sqrt{2}+1}\)
= \(\sqrt{\left(3\sqrt{2}+1\right)^2}\)
= \(3\sqrt{2}+1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
<=> \(3x^2+3x=2\sqrt{x^2+x}+1\)
<=> Đặt \(\sqrt{x^2+x}=a\) \(\left(a\ge0\right)\)ta có
\(3a^2-2a-1=0\)
có a+b+c=0
=> a1=1 => \(x^2+x=1\)
=> a2=-1/3 => x2+x=-1/3
dùng công thức nghiệm tính nốt nha bn! :D
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3\left(x+\sqrt{x-1}\right)\left(x-\sqrt{x-1}\right)=\left(x+\sqrt{x-1}\right)^2\)
=>\(\left(x+\sqrt{x-1}\right)\left(4x-4\sqrt{x-1}\right)=0\)
từ đay tự giải nốt
K O C A B I H 1 1
Xét tam giác ABO vuông tại B và ACO vuông tại C
có: AB=AC , AO chung
=> \(\Delta ABO=\Delta ACO\)
=> BO=CO
Xét tam giác DBC có: BO=CO=KO
=> Tam giác KBC vuông tại B
=> KB vuông góc với CI
Xét tam giác IKC vuông tại K có KB là dường cao
=> \(BK^2=IB.BC\Rightarrow\frac{BK}{IB}=\frac{BC}{BK}\)(1)
Ta có tam giác OBK vuông cân tại O và tam giác ABC cân tại A
=> \(\widehat{ABC}=\widehat{ACB};\widehat{OBK}=\widehat{OKB}\)(2)
mà \(\widehat{OBK}+\widehat{OBC}=\widehat{CBK}=90^o=\widehat{ABO}=\widehat{ABC}+\widehat{OBC}\)
=> \(\widehat{OBK}=\widehat{ABC}\)(3)
Từ (2) và (3) suy ra : \(\frac{AB}{BO}=\frac{BC}{BK}\)(4)
Từ (1) và (4)
=> \(\frac{BK}{BI}=\frac{AB}{BO}\)
Xét tam giác IBO và tam giác KBA có:
\(\frac{BK}{BI}=\frac{AB}{BO}\)( chứng minh trên)
\(\widehat{IBO}=\widehat{KBA}\)( vì \(\widehat{IBK}=\widehat{OBA}=90^o\))
=> \(\Delta IBO~\Delta KBA\)
=> \(\widehat{A_1}=\widehat{O_1}\)
Gọi giao điểm của IO và AK là H
=> \(\widehat{BAH}=\widehat{BOH}\)
=> BAOH nội tiếp
=> \(\widehat{OHA}=\widehat{OBA}=90^o\)
( Nếu chua học nội tiếp em hãy xét hai tam giác đồng dạng)
=> IO vuông AK