Cho tam giác ABC vg tài A , I trung điểm AB . Kẻ IH vg BC tại H . CM
a) \(\frac{1}{4.IH^2}\) = \(\frac{1}{AC^2}\) + \(\frac{1}{AB^2}\)
b) AC2 +BH2 = CH2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-\left(m-1\right)x+2m-6=0\) (1)
Để pt (1) có 2 nghiệm phân biệt thì:
\(\Delta=\left(1-m\right)^2-4\left(2m-6\right)=m^2-10m+25=\left(m-5\right)^2>0\)\(\Leftrightarrow\)\(m\ne5\)
\(x_1=\frac{m-1+\left|m-5\right|}{2}\) và \(x_2=\frac{m-1-\left|m-5\right|}{2}\)
Dễ dàng thấy \(x_1>x_2\) nên ta cần tìm m để \(x_1< -2019\)
\(\Leftrightarrow\)\(\frac{m-1+\left|m-5\right|}{2}< -2019\)
\(\Leftrightarrow\)\(\left|m-5\right|< -m-4037\)
\(\Leftrightarrow\)\(\hept{\begin{cases}-m-4037>0\\m^2-10m+25< m^2+8074m+4037^2\end{cases}\Leftrightarrow\hept{\begin{cases}m< -4037\\8084m>25-4037^2\end{cases}}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}m< -4037\\m>\frac{25-4037^2}{8084}\end{cases}\Leftrightarrow\hept{\begin{cases}m< -4037\\m>-2016\end{cases}}}\) ( vô lí )
Vậy không có m để pt (1) có ít nhất 1 nghiệm nhỏ hơn -2019
PS: ko chắc nhé, ai thấy lỗi sai thì ib giúp
Cho phương trình \(x^2+2mx-2m+1=0\)
Xác định m để phương trình có 2 nghiệm \(x_1,x_2\)cùng lớn hơn -5
\(x^2+2mx-2m+1=0\) (1)
pt (1) có 2 nghiệm x1, x2 cùng lớn hơn -5 \(\Leftrightarrow\)\(\hept{\begin{cases}\Delta'\ge0\\x_1+5>0\\x_2+5>0\end{cases}\Leftrightarrow\hept{\begin{cases}m^2+2m-1\ge0\left(2\right)\\\left(x_1+5\right)+\left(x_2+5\right)>0\left(3\right)\\\left(x_1+5\right)\left(x_2+5\right)>0\left(4\right)\end{cases}}}\)
(2) \(\Leftrightarrow\)\(\left(m+1\right)^2\ge2\)\(\Leftrightarrow\)\(\orbr{\begin{cases}m\ge\sqrt{2}-1\\m\le-\sqrt{2}-1\end{cases}}\)
Theo Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=-2m\\x_1x_2=1-2m\end{cases}}\)
(3) \(\Leftrightarrow\)\(-2m+10>0\)\(\Leftrightarrow\)\(m< 5\)
(4) \(\Leftrightarrow\)\(1-2m-10m+25>0\)\(\Leftrightarrow\)\(m< \frac{13}{6}\)
Kết hợp các ĐK của m ta suy ra \(\orbr{\begin{cases}m\ge\sqrt{2}-1\\m\le-\sqrt{2}-1\end{cases}}\) hay \(m\ne k\) với \(k\in A\) và \(A=\left(-\sqrt{2}-1;\sqrt{2}-1\right)\)
...
Với m=3
\(PT\Leftrightarrow x^2-3x-x+3=0\)
\(\Leftrightarrow x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy pt có 2 nghiệm x=1, x=3 khi m=3
ta có \(x^2-mx+m-x\)
=\(x\left(x-m\right)+\left(m-x\right)\)
=\(x\left(x-m\right)-\left(x-m\right)\)
=\(\left(x-m\right)\left(x-1\right)\)
với m=3 thì
\(\left(x-3\right)\left(x-1\right)=0\)
=>\(\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\)=>\(\hept{\begin{cases}x=3\\x=1\end{cases}}\)
vậy...
bn tự kết luận nhé
Ta có \(a^4+ab^3=2a^3b^2\)
Do a>0
=> \(a^3+b^3=2a^2b^2\)
<=> \(\frac{a}{b^2}+\frac{b}{a^2}=2\)
Đặt \(\frac{a}{b^2}=x;\frac{b}{a^2}=y\)(x,y là số hữu tỉ)
=>\(\hept{\begin{cases}x+y=2\\x.y=\frac{1}{ab}\end{cases}}\)=> \(\hept{\begin{cases}x=2-y\\xy=\frac{1}{ab}\end{cases}}\)
=> \(\sqrt{1-\frac{1}{ab}}=\sqrt{1-y\left(2-y\right)}=\sqrt{y^2-2y+1}=|y-1|\)là số hữu tỉ
=> ĐPCM
Vậy \(\sqrt{1-\frac{1}{ab}}\)là số hữu tỉ