Cho a,b,c là các số thực dương, chứng minh biểu thức
\(\frac{a^5}{a^2-ab+b^2}+\frac{b^5}{b^2-bc+c^2}+\frac{c^5}{c^2-ca+a^2}\ge\frac{a^3+b^3+c^3}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=1+\frac{7}{n-5}\inℤ\Leftrightarrow\frac{7}{n-5}\inℤ\)
mà \(n\inℤ\)nên \(n-5\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\Leftrightarrow n\in\left\{-2,4,6,12\right\}\).
a, \(B=559^{361}-7^{202}\)
\(B=559^{2.180+1}-7^{4.50+2}\)
\(B=\left(559^2\right)^{180}.559-\left(7^4\right)^{50}.49\)
\(B=312481^{180}.559-2401^{50}.49\)
Vì \(312481\)cs tận cùng là 1 nên \(312481^{180}\)cx cs tận cùng là 1
Vì \(2401\)cs tận cùng là 1 nên \(2401^{50}\)cx cs tận cùng là 1
\(\Rightarrow B\)cs tận cùng là \(1.9-1.9=9-9=0\)
Vậy B cs tận cùng là 0
b, Vì B có tận cùng là 0
\(\Rightarrow B⋮10\)
Hok tốt
Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức và khi đó ta được:
\(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ca+a^2}\ge\)
\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\)
\(\Rightarrow\)Ta cần chỉ ra được:
\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\ge\frac{a^3+b^3+c^3}{3}\)
Hay: \(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)
Dễ thấy: \(a^3+b^3\ge ab\left(a+b\right);b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)
Cộng theo vế các bất đẳng thức trên ta được:
\(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)
Vậy bất đẳng thức đã được chứng minh.