a,Tìm cặp (x,y) sao cho y đạt giá trị nhỏ nhất thỏa mãn
x2+5y2+2y-4xy-3=0
b,Cho 2 số nguyên dương lẻ m,n và nguyên tố cùng nhau thỏa mãn \(m^2+2⋮n,n^2+2⋮m\).Chứng minh rằng \(m^2+n^2+2⋮4mn\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ xin phép bổ sung đề bài là : \(N\in BC\)ạ, vì nếu không có dữ kiện này thì MN có vô vàn giá trị nhé.
Gọi F là giao điểm của MN và AC, vì \(MN//AB;AB//CD\left(gt\right)\)
\(\Rightarrow MF//AB//CD;NF//AB//CD\)
Ta có : \(\frac{MA}{MD}=\frac{2}{5}\Rightarrow\frac{MA}{AD}=\frac{2}{7}\left(M\in AD\right)\)
Áp dụng định lí Ta-lét trong \(\Delta ADC\left(MF//DC\right)\)có :
\(\frac{AF}{AC}=\frac{MA}{AD}=\frac{MF}{DC}\Rightarrow\frac{AF}{AC}=\frac{2}{7}=\frac{MF}{70}\Rightarrow MF=\frac{2\cdot70}{7}=20\)( đơn vị đo )
Vì \(\frac{AF}{AC}=\frac{2}{7}\Rightarrow\frac{CF}{AC}=\frac{5}{7}\left(F\in AC\right)\)
Áp dụng định lí Ta-lét trong \(\Delta ABC\left(NF//AB\right)\)có :
\(\frac{CF}{AC}=\frac{NF}{AB}\Rightarrow\frac{NF}{28}=\frac{5}{7}\Rightarrow NF=\frac{5\cdot28}{7}=20\)( đơn vị đo )
Do \(F\in MN\Rightarrow MF+NF=MN\Rightarrow MN=20+20=40\)( đơn vị đo )
Cảm ơn Hoài An, đề bài sẽ là vẽ MN//AB, N thuộc BC nhé. Tại trưa nay vội quá tớ quên gõ vào.
Ta có : \(5x^2+8xy+5y^2+4x-4y+8=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2+4x+4\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x+2\right)^2+\left(y-2\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(2x+2y\right)^2=0\\\left(x+2\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=-y\\x=-2\\y=2\end{cases}}\) ( thỏa mãn )
Khi đó \(P=\left(-2+2\right)^{22}.\left(-2+1\right)^{12}+\left(2-1\right)^{2019}\)
\(=0+1=1\)
Vậy : \(P=1\) với x,y thỏa mãn đề.
ta được (4x^2+8xy+4y^2)+(x^2+4x+4)+(Y^2-4y+4)=0
(2x+2y)^2+(x+2)^2+(y-2)^2=0
(=)x=-2 và y=2
P=0-1+1=0
\(\Leftrightarrow6x^2+10x-6x-10=0\)
\(\Leftrightarrow6x^2+4x-10=0\)
Ta có \(\Delta=4^2+4.6.10=256,\sqrt{\Delta}=16\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-4+16}{12}=1\\x=\frac{-4-16}{12}=\frac{-5}{3}\end{cases}}\)
e mới lớp 5 nên chưa chắc ạ >:
\(2x\left(3x+5\right)-6x-10=0\)
\(=>6x^2+10x-6x-10=0\)
\(=>6x.\left(x-1\right)+10.\left(x-1\right)=0\)
\(=>\left(6x+10\right)\left(x-1\right)=0\)
\(=>\orbr{\begin{cases}6x+10=0\\x-1=0\end{cases}=>\orbr{\begin{cases}x=\frac{-10}{6}\\x=1\end{cases}}}\)
Ta có \(M=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(\Leftrightarrow M=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(t=x^2+5x+5\)Khi đó
\(M=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+5x+5\right)^2\)
Vì x nguyên nên \(x^2+5x+5\)nguyên \(\Rightarrow\left(x^2+5x+5\right)^2\)là bình phương của 1 số nguyên (đccm)
Hok tốt!!
a, x2+5y2+2y-4xy-3=0
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\)(vô lí)
\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)
lúc đó \(\left(x+6\right)^2+4=4\Rightarrow x=-6\)
Vậy.................
a) \(x^2+5y^2+2y-4xy-3=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Ta thấy : \(4=0+4\) là tổng hai số chính phương
Thử các giá trị \(\orbr{\begin{cases}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{cases}}\)
Ta thấy : \(y=-3\) đạt giá trị nhỏ nhất.
Khi đó : \(x^2+5.\left(-3\right)^2+2\left(-3\right)-4x\left(-3\right)-3=0\)
\(\Leftrightarrow x=-6\)
Vậy : \(\left(x,y\right)=\left(-6,-3\right)\) với y nhỏ nhất thỏa mãn đề.
P/s : Không chắc lắm ....