K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2020

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x-y}{2-3}=\frac{y-z}{3-4}=\frac{x-z}{2-4}\) (T/c dãy tỷ số bằng nhau)

\(\Rightarrow\frac{x-z}{-2}=-\left(x-y\right)\left(1\right)\Rightarrow\frac{\left(x-z\right)^3}{-8}=-\left(x-y\right)^3=-\left(x-y\right)^2\left(x-y\right)\left(2\right)\)

\(\Rightarrow\frac{x-z}{-2}=-\left(y-z\right)\left(3\right)\)

Từ (1) và (3) \(\Rightarrow\left(x-y\right)=\left(y-z\right)\) Thay vào (2)

\(\Rightarrow\frac{\left(x-z\right)^3}{-8}=-\left(x-y\right)^2\left(y-z\right)\Rightarrow\left(x-z\right)^3=8\left(x-y\right)^2\left(y-z\right)\left(dpcm\right)\)

NM
23 tháng 12 2020

ta có 

\(A=\frac{3a-2b}{2a-3b}=\frac{\frac{3a}{b}-2}{\frac{2a}{b}-3}=\frac{\frac{3.5}{6}-2}{\frac{2.5}{6}-3}=\frac{\frac{1}{2}}{-\frac{4}{3}}=-\frac{3}{2}\)

23 tháng 12 2020

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)

\(=1-\frac{1}{20}=\frac{19}{20}\)

Vậy\(A=\frac{19}{20}\)

23 tháng 12 2020

\(\frac{1}{2}a=\frac{2}{3}b\Rightarrow\frac{a}{\frac{2}{3}}=\frac{b}{\frac{1}{2}}\Rightarrow a=\frac{b}{\frac{3}{4}}\)

\(\Rightarrow\frac{a}{1}=\frac{b}{\frac{3}{4}}=\frac{c}{\frac{2}{3}}\)

Áp dụng tính chât dãy tỉ số bằng nhau ta có

\(\frac{a}{1}=\frac{b}{\frac{3}{4}}=\frac{c}{\frac{2}{3}}=\frac{a-b}{1-\frac{3}{4}}=\frac{15}{\frac{1}{4}}=60\)

\(\Rightarrow a=60.1=60\)

\(b=60.\frac{3}{4}=45\)

\(c=60.\frac{2}{3}=40\)

NM
23 tháng 12 2020

\(M=3\left|x-2013\right|+\left|x+1\right|+\left|x+2014\right|\)

hay \(M=\left|2013-x\right|+\left|x+1\right|+\left|2013-x\right|+\left|x+2014\right|+\left|2013-x\right|\)

mà ta có 

\(\hept{\begin{cases}\left|2013-x\right|\ge0\\\left|2013-x\right|+\left|x+1\right|\ge\left|2013-x+x+1\right|=2014\\\left|2013-x\right|+\left|x+2014\right|\ge\left|2013-x+x+2014\right|=4027\end{cases}}\)

Vậy \(M\ge2014+4027=6041\)

dấu bằng xay ra khi x=2013

23 tháng 12 2020

Ta có : 2x = 3y =>\(\frac{x}{3}=\frac{y}{2}\)=>\(\frac{x}{6}=\frac{y}{4}\)(1)

            2y = 4z =>\(\frac{y}{4}=\frac{z}{2}\)(2)

Từ (1) và (2) suy ra : \(\frac{x}{6}=\frac{y}{4}=\frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{2}=\frac{3x}{18}=\frac{2z}{4}=\frac{3x-2z}{18-4}=\frac{10}{14}=\frac{5}{7}\)

Từ\(\frac{x}{6}=\frac{5}{7}\)=> \(x=\frac{30}{7}\)

    \(\frac{y}{4}=\frac{5}{7}\)=> \(y=\frac{20}{7}\)

     \(\frac{z}{2}=\frac{5}{7}\)=> \(z=\frac{10}{7}\)

Vậy \(x=\frac{30}{7}\)\(y=\frac{20}{7}\)và \(z=\frac{10}{7}\)