Cho tam giácABC có trung tuyến AM bằng cạnh AC . Tính tgB : tgC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh tham khảo tại đây:
Câu hỏi của Đinh Đức Hùng - Toán lớp 8 - Học toán với OnlineMath
Để phương trình có nghiệm cần : \(\(\(\(\Delta\ge0\)\)\)\)
hay \(\(\(\(\orbr{\begin{cases}a\ge2\\a\le-2\end{cases}}\)\)\)\)và \(\(\(\(\orbr{\begin{cases}b\ge2\sqrt{17}\\b\le-2\sqrt{17}\end{cases}\left(\cdot\right)}\)\)\)\)
Gọi \(\(\(\(t\)\)\)\)là nghiệm chung 2 phương trình , ta có :
\(\(\(\(\hept{\begin{cases}t^2+t.a+1=0\\t^2+t.b+17=0\end{cases}}\)\)\)\)
\(\(\(\(\Rightarrow t\left(a-b\right)-16=0\Rightarrow a-b=\frac{16}{t}\)\)\)\)
Giải phương trình \(\(\(\(\left(1\right)\)\)\)\): tìm \(\(\(\(t\)\)\)\)theo \(a\):
\(\(\(\(t=\frac{-a\pm\sqrt{a^2-4}}{2}\Rightarrow b=a-\frac{32}{-a\pm\sqrt{a^2-4}}\)\)\)\)
Kết hợp với \(\(\(\(\left(\cdot\right)\)\)\)\): \(\(\(\(b\in(-\infty;-2\sqrt{17}]\)\)\)\)∪\(\(\(\([2\sqrt{17};+\infty)\)\)\)\)
+) Với \(\(\(\(b=a-\frac{32}{\sqrt{a^2-4}-a}=\frac{544a+\sqrt{a^2-4}}{32}\)\)\)\)
Nếu \(\(\(\(a\ge2\)\)\)\)thì \(\(\(b\ge18\left(tm\right)\)\)\)
Nếu \(\(\(\(a\le-2\)\)\)\), Ta phải chứng minh \(\(\(\(32a+\sqrt{a^2-4}\le-4\sqrt{17}\)\)\)\)hay \(\(\(\(32a+4\sqrt{17}\le-\sqrt{a^2-4}\)\)\)\)
____________cạn, hình như sai ở đâu , để xem lại________
_Sorry_
_Minh ngụy_
___Giải PT (1), tìm t theo a :_
.....................
\(a\ge2\Rightarrow b\ge18\left(tm\right)\)
\(a\le2\Rightarrow......................\)(luôn đúng với mọi \(b\))
+) Nếu \(b=a-\frac{32}{-a-\sqrt{a^2-4}}=\frac{544a-\sqrt{a^2-4}}{32}\). cũng tương tự như trên , thỏa mãn với
\(a\in(-\infty;-2]\)U \([2;+\infty)\)
Như vậy , tìm được b theo a \(b=\frac{544a\pm\sqrt{a^2-4}}{32}\)
Suy ra \(|a|+|b|=a+\frac{544+\sqrt{a^2-4}}{32}\)
Giờ chỉ việc xét \(|a|\in[2;+\infty)\)là ra min và a,b nha
_Minh ngụy_
a) Để A có nghĩa :
\(\Rightarrow\sqrt{2x+3-x^2\: }\Leftrightarrow2+\sqrt{2x+3-x^2}\ge2\forall x\)
\(\Rightarrow\sqrt{-\left(x-1\right)^2+4}\ge0\)
\(\Leftrightarrow-\left(x-1\right)^2\ge-4\)
\(\Leftrightarrow\left(x-1\right)^2\le4\)
\(\Rightarrow3\ge x\ge-1\)
Vậy.....
5.What are you doing at the moment?
...........I am playing football at the moment.........................
6.Does your sister often practise English?
...........Yes,she does....................
7.Who read you diary two days ago?
................Nam read your diary two days ago.....................
8.Where did you see this advertisement?
.........I saw this advertisement on the streets........
Theo mình nghĩ thì đề bài là trả lời câu hỏi.Ko phải thì nhắn tin cho mình để mình làm lại nhé!
\(=\left(\sqrt{3}-1\right).\sqrt{2}.\sqrt[]{2+\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right).\sqrt[]{2.\left(2+\sqrt{3}\right)}\)
\(=\left(\sqrt{3}-1\right).\sqrt{4+2\sqrt{3}}\)
\(=\left(\sqrt{3}-1\right).\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}\)
\(=\left(\sqrt{3}-1\right).\sqrt{3+2\sqrt{3}+1}\)
\(=\left(\sqrt{3}-1\right).\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left(\sqrt{3}-1\right).|\sqrt{3}+1|\)
\(=\left(\sqrt{3}-1\right).\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}\right)^2-1\)
\(=3-1\)
\(=2\)
Câu hỏi của Le Ngan - Toán lớp 9 - Học toán với OnlineMath
vì 2016 \(⋮\)4 nên đặt a2016 = a4k sau đó làm tương tự