K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(E=2015\cdot2017=\left(2016-1\right)\left(2016+1\right)\)

\(=2016^2-1=F-1\)

=>E<F

\(C=123\cdot137137=123\cdot137\cdot1001\)

\(D=137\cdot123123=137\cdot123\cdot1001\)

Do đó: C=D

NV
4 tháng 8 2024

\(C=123.137137=123.137.1001\)

\(D=137.123123=137.123.1001\)

\(\Rightarrow C=D\)

b.

Em kiểm tra lại đề, \(F=1016.2016\) hay \(F=2016.2016?\)

286:(38-2x)=13

=>38-2x=286:13=22

=>2x=38-22=16

=>x=16:2=8

NV
4 tháng 8 2024

\(286:\left(38-2x\right)=13\)

\(38-2x=286:13\)

\(38-2x=22\)

\(2x=38-22\)

\(2x=16\)

\(x=16:2\)

\(x=8\)

4 tháng 8 2024

Ta có: 

A = 123 x 123

= (121 + 2) x 123

= 121 x 123 + 2 x 123 

= 121 x (124 - 1) + 246

= 121 x 124 - 121 + 246  

= 121 x 124 + 125 > 121 x 124

=> A > B 

\(B=121\cdot124=\left(123-2\right)\left(123+1\right)\)

\(=123^2+123-2\cdot123-2\)

\(=123^2-123-2=A-125\)
=>B<A

4 tháng 8 2024

\(187:\left(2x-1\right)=11\\ =>2x-1=\dfrac{187}{11}\\ =>2x-1=17\\ =>2x=17+1\\ =>2x=18\\ =>x=\dfrac{18}{2}\\ =>x=9\)

NV
4 tháng 8 2024

\(187:\left(2x-1\right)=11\)

\(2x-1=187:11\)

\(2x-1=17\)

\(2x=1+17\)

\(2x=18\)

\(x=18:2\)

\(x=9\)

NV
4 tháng 8 2024

\(0< a< 2\Rightarrow a\left(a-2\right)< 0\Rightarrow a^2< 2a\)

Tương tự: \(\left\{{}\begin{matrix}b\left(b-2\right)< 0\\c\left(c-2\right)< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b^2< 2b\\c^2< 2c\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2< 2\left(a+b+c\right)\)

\(\Rightarrow a^2+b^2+c^2< 2.3=6\)

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{EAB}\) chung

Do đó: ΔAEB~ΔAFC

=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

=>\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

=>\(AE\cdot AC=AF\cdot AB\)

b: Xét ΔADB vuông tại D có DM là đường cao

nên \(AM\cdot AB=AD^2\left(1\right)\)

Xét ΔADC vuông tại D có DN là đường cao

nên \(AN\cdot AC=AD^2\left(2\right)\)

Từ (1),(2) suy ra \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AB}{AC}=\dfrac{AN}{AM}\)

=>\(\dfrac{AN}{AM}=\dfrac{AE}{AF}\)

=>\(\dfrac{AE}{AN}=\dfrac{AF}{AM}\)

=>\(AN\cdot AF=AM\cdot AE\)

c: Xét ΔANM có \(\dfrac{AE}{AN}=\dfrac{AF}{AM}\)

nên EF//MN

1-3+5-7+9-11+...+37-39+41

=(1-3)+(5-7)+(9-11)+...+(37-39)+41

=41-(2+2+...+2)

=41-2x10=41-20=21

4 tháng 8 2024

21

NV
4 tháng 8 2024

\(\overrightarrow{AB}=\left(1;1-3\right)\)\(\overrightarrow{AC}=\left(-1;2;-5\right)\)

\(\left[\overrightarrow{AB},\overrightarrow{AC}\right]=\left(1,8,3\right)\)

\(\Rightarrow\left(ABC\right)\) nhận (1,8,3) là 1 ptvt

Phương trình:

\(1\left(x-5\right)+8\left(y-1\right)+3\left(z-4\right)=0\)

\(\Leftrightarrow x+8y+3z-25=0\)

NV
4 tháng 8 2024

Số số thỏa mãn là:

\(\left(198-0\right):3+1=67\) (số)