Giải phương trình
\(\left(x-1\right)\left(x^2+x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo ở đây ạ:
https://olm.vn/hoi-dap/detail/6316716822.html
Bài này tương tự thui!!
hok tốt!!
\(\frac{n^2+3n+1}{n+2}\inℤ\)
\(\Rightarrow n^2+3n+1⋮n+2\)
\(\Rightarrow n^2+4n+4-n-3⋮n+2\)
\(\Rightarrow\left(n+2\right)^2-\left(n+3\right)⋮n+2\)
\(\Rightarrow n+3⋮n+2\)
\(\Rightarrow n+2+1⋮n+2\)
\(\Rightarrow1⋮n+2\)
\(\Rightarrow n+2\inƯ\left(1\right)\)
\(\Rightarrow n+2\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{-3;-1\right\}\) mà n thuộc N
\(\Rightarrow n\in\varnothing\)
\(\frac{2x+2}{5}+\frac{3}{10}< \frac{3x-2}{4}\)
\(\Leftrightarrow8x+8+6< 15x-10\)
\(\Leftrightarrow8x+14< 15x-10\)
\(\Leftrightarrow-7x< -24\)
\(\Leftrightarrow x>\frac{24}{7}\)
a, MC // AB => MC/AB = MF/FB (hệ quả)
MB // AB => BM/AB = ME/EA (hệ quả)
Có BM = CM do M là trung điểm của BC (gt)
=> MF/FB = ME/EA
=> EF // AB
b, có HF // BM => AE/EM = HE/BM (hệ quả)
EF // MC => AE/EM = EF/MC (hệ quả)
BM = MC (Câu a)
=> HE = EF (1)
có EF // BM => EF/BM = BF/FM (hệ quả)
FN // MC => FN/MC = FB/FM (hệ quả)
BM = CM (Câu a)
=> EF = FN và (1)
=> HE = EF = FN
\(\frac{7+x}{4}+\frac{3}{2}< \frac{x-2}{2}+6\)
\(\Leftrightarrow7+x+6< 2x-4+24\)
\(\Leftrightarrow x+13>2x+20\)
\(\Leftrightarrow x< -7\)
\(\frac{7+x}{4}+\frac{3}{2}< \frac{x-3}{2}+6\)
\(\Rightarrow\frac{x+13}{4}< \frac{x+10}{2}\)
\(\Rightarrow x+13< 2x+20\)
\(\Rightarrow-x< 7\)
\(\Rightarrow x>-7\)
\(\frac{x-3}{x-2}>2\)
\(\Rightarrow\frac{x-3}{x-2}-2>0\)
\(\Rightarrow\frac{x-3-2x+4}{x-2}>0\)
\(\Rightarrow\frac{1-x}{x-2}>0\)
Trường hợp 1 :\(\hept{\begin{cases}1-x>0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}\left(vl\right)}}\)
Trường hợp 2 : \(\hept{\begin{cases}1-x< 0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}\left(tm\right)}}\)
Vậy \(1< x< 2\)
\(\hept{\begin{cases}1-x>0\\x-2 >0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}\left(VL\right)}}\)
a, xét tứ giác BICG có :
M là trung điểm cuả BC do AM là trung tuyến (gt)
M là trung điểm của GI do I đx G qua M (gt)
=> BICG là hình bình hành (dh)
+ G là trọng tâm của tam giác ABC (gt)
=> GM = AG/2 và GN = BG/2 (đl)
E; F lần lượt là trung điểm của GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)
=> FG = GM và GN = GE
=> G là trung điểm của FM và EN
=> MNFE là hình bình hành (dh)
b, MNFE là hình bình hành (câu a)
để MNFE là hình chữ nhật
<=> NE = FM
có : NE = 2/3BN và FM = 2/3AM
<=> AM = BN mà AM và BN là trung tuyến của tam giác ABC (Gt)
<=> tam giác ABC cân tại C (đl)
c, khi BICG là hình thoi
=> BG = CG
BG và AG là trung tuyến => CG là trung tuyến
=> tam giác ABC cân tại A
Thay x =-2 vào phương trình :
\(4.\left(-2\right)^2-25+k^2+4k.\left(-2\right)=0\)
\(\Leftrightarrow16-25+k^2-8k=0\)
\(\Leftrightarrow k^2-8k-9=0\)
\(\Leftrightarrow\left(k-9\right)\left(k+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}k-9=0\\k+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}k=9\\k=-1\end{cases}}\)
Vậy để phương trình nhận x =-2 làm nghiệm \(\Leftrightarrow k\in\left\{9;-1\right\}\)
\(\)
\(\left(x-1\right)\left(x^2+x+1\right)-2x=x\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow x^3-1-2x=x^3-x\)
\(\Leftrightarrow-1-2x=-x\)
\(\Leftrightarrow x=-1\)
Vậy nghiệm duy nhất của phương trình là -1
(x-1)(x2+x+1)-2x=x(x-1)(x+1)
\(\Leftrightarrow\) x3-1-2x=x(x2-1)
\(\Leftrightarrow\) x3-1-2x=x3-x
\(\Leftrightarrow\) x-1-2x=x3-x3
\(\Leftrightarrow\) -x-1=0
\(\Leftrightarrow\) -x=1
\(\Leftrightarrow\) x=-1
Vậy pt có 1 nghiệm là x=-1
Chúc bạn học tốt nha!