K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

\(\frac{\sqrt{x^2-2x+1}+\sqrt{x^2}+1}{x-2}\)

\(=\frac{\sqrt{\left(x-1\right)^2}+\left|x\right|+1}{x-2}\)

\(=\frac{\left|x-1\right|+\left|x\right|+1}{x-2}\)

P/S: Ko chắc

27 tháng 7 2019

làm tiếp đc k

27 tháng 7 2019

-1; -6

b) ĐK: \(x^2+7x+7\ge0\) (đk xấu quá em ko giải đc;v)

PT \(\Leftrightarrow3x^2+21x+18+2\left(\sqrt{x^2+7x+7}-1\right)=0\)

\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+2\left(\frac{x^2+7x+6}{\sqrt{x^2+7x+7}+1}\right)=0\)

\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+\frac{2\left(x+1\right)\left(x+6\right)}{\sqrt{x^2+7x+7}+1}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left[3+\frac{1}{\sqrt{x^2+7x+7}+1}\right]=0\)

Hiển nhiên cái ngoặc vuông > 0 nên vô nghiệm suy ra x = -1 (TM) hoặc x = -6 (TM)

Vậy....

P/s: Cũng may nghiệm đẹp chứ chứ nghiệm xấu thì tiêu rồi:(

27 tháng 7 2019

chết, đánh nhầm dòng tương đương cuối:

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left[3+\frac{2}{\sqrt{x^2+7x+7}+1}\right]=0\)

27 tháng 7 2019

viết thế nay bố ai hiểu được

27 tháng 7 2019

bạn kì quá ko giúp thì thôi còn phàn nàn. 

27 tháng 7 2019

Bài 3 

Với abc=1

Ta CM \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}=1\)

\(VT=\frac{1}{ab+a+1}+\frac{a}{abc+ab+a}+\frac{ab}{a^2bc+abc+ac}\)

       \(=\frac{1}{ab+a+1}+\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}=1\)(ĐPCM)

Ta có \(\left(1+a\right)^2+b^2+5=\left(a^2+b^2\right)+2a+6\ge2ab+2a+6\)

=> \(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}=\frac{2ab+2a+6}{ab+a+4}=2-\frac{2}{ab+a+4}\)

Mà \(\frac{1}{ab+a+4}=\frac{1}{ab+a+1+3}\le\frac{1}{4}\left(\frac{1}{ab+a+1}+\frac{1}{3}\right)\)(do \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\))

=> \(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}\ge2-\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{3}\right)=\frac{11}{6}-\frac{1}{2}.\frac{1}{ab+a+1}\)

Khi đó

\(P\ge\frac{11}{2}-\frac{1}{2}.\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ac+c+1}\right)=\frac{11}{2}-\frac{1}{2}.1=5\)

\(MinP=5\)khi \(a=b=c=1\)