cho tam giác abc có ab=4 ac=6. trên ab,ac lần lượt lấy các điểm D,E sao cho BD=CE. DE cắt BC tại I. Tính tỉ số IE/ID
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AFDC có:
AFC =90 , ADC=90(gt)
mà 2 góc này cùng nhìn cạnh AC
nên tứ giác AFDC nội tiếp đường tròn đường kính AC hay A,C,D,F cùng thuộc một đường tròn
Xét tứ giác AEHF có"
AFH =90 AEH=90(gt)
AFH+AEH =180
mà 2 góc này nằm ở vị trí đối nhau
nên tứ giác AEHF nội tiếp đường tròn đường kính AH
hay A,F,H,E cùng thuộc một đường tròn
\(x+\sqrt{x}+2\sqrt{x}+2\)
= \(\sqrt{x}\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
= \(\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)\)
\(2x-2\sqrt{x}+3\sqrt{x}-3\)
= \(2\sqrt{x}\left(\sqrt{x}-1\right)+3\left(\sqrt{x}-1\right)\)
= \(\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)
Áp dụng BĐT AM-GM ta có:
\(\left(a+1\right)^2+b^2+1=a^2+2a+1+b^2+1=\left(a^2+b^2\right)+2a+2\ge2\left(ab+a+1\right)\)
\(\Rightarrow\frac{1}{\left(a+1\right)^2+b^2+1}\le\frac{1}{2\left(ab+a+1\right)}\)(1)
\(\left(b+1\right)^2+c^2+1=b^2+2b+1+c^2+1=\left(b^2+c^2\right)+2b+2\ge2\left(bc+b+1\right)\)
\(\Rightarrow\frac{1}{\left(b+1\right)^2+c^2+1}\le\frac{1}{2\left(bc+b+1\right)}\)(2)
\(\left(c+1\right)^2+a^2+1=c^2+2c+1+a^2+1=\left(c^2+a^2\right)+2c+2\ge2\left(ca+c+1\right)\)
\(\Rightarrow\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2\left(ca+c+1\right)}\)(3)
Cộng vế theo vế của (1) ; (2) ; (3) ta được:
\(\frac{1}{\left(a+1\right)^2+b^2+1}+\frac{1}{\left(b+1\right)^2+c^2+1}+\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)=\frac{1}{2}\)Dấu "=" xảy ra \(\Leftrightarrow a=b=b=1\)
\(A=\frac{\sqrt{\sqrt{3}+2}-\sqrt{-\sqrt{3}+2}}{\sqrt{\sqrt{3}+2}+\sqrt{-\sqrt{3}+2}}\)
\(A=\frac{\sqrt{2}}{\sqrt{2}}\cdot\frac{\sqrt{\sqrt{3}+2}-\sqrt{-\sqrt{3}+2}}{\sqrt{\sqrt{3}+2}+\sqrt{-\sqrt{3}+2}}\)
\(\Rightarrow A=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{3}+1+\sqrt{3}-1}=\frac{2}{2\sqrt{3}}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow\frac{\sqrt{\sqrt{3}+2}-\sqrt{-\sqrt{3}+2}}{\sqrt{\sqrt{3}+2}+\sqrt{-\sqrt{3}+2}}=\frac{\sqrt{3}}{3}\)
ĐK : \(x\ge1\)
\(A=\sqrt{x+2\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}}-\sqrt{x-1+6\sqrt{x-1}+9}\)
\(=\sqrt{(\sqrt{x-1}-1)^2}-\sqrt{(\sqrt{x-1}+3)^2}\)
\(=\left|\sqrt{x-1}-1\right|-\left|\sqrt{x-1}+3\right|\)
\(=\hept{\begin{cases}1-\sqrt{x-1}-\sqrt{x-1}-3;1\le x\le2\\\sqrt{x-1}-1-\sqrt{x-1}-3;x>2\end{cases}}\)
\(=\hept{\begin{cases}-2-2\sqrt{x-1};1\le x\le2\\-4;x>2\end{cases}}\)
bạn bấm máy giải phương trình bậc 2
hoặc đưa về phương trình \(A^2=B^2\)như sau:\(x^2+4x-2=0\)
\(x^2+2.x.2+2^2-6=0\)
\(\left(x+2\right)^2=\sqrt{6}^2\)
\(\left|x+2\right|=\sqrt{6}\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=\sqrt{6}\\x+2=-\sqrt{6}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{6}-2\\x=-\sqrt{6}+2\end{cases}}\)
\(ĐKXĐ:x;y\ge2\)
Trừ 2 vế của hệ cho nhau ta được
\(\left(\sqrt{x+1}-\sqrt{y+1}\right)+\left(\sqrt{y-2}-\sqrt{x-2}\right)=0\)
\(\Leftrightarrow\frac{x+1-y-1}{\sqrt{x+1}+\sqrt{y+1}}+\frac{y-2-x+2}{\sqrt{y-2}+\sqrt{x-2}}=0\)
\(\Leftrightarrow\frac{x-y}{\sqrt{x+1}+\sqrt{y+1}}-\frac{x-y}{\sqrt{x-2}+\sqrt{y-2}}=0\)
\(\Leftrightarrow\left(x-y\right)\left(\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{x-2}+\sqrt{y-2}}\right)=0\)(1)
Vì \(\sqrt{x+1}+\sqrt{y+1}>\sqrt{x-2}+\sqrt{y-2}\)
\(\Rightarrow\frac{1}{\sqrt{x+1}+\sqrt{y+1}}< \frac{1}{\sqrt{x-2}+\sqrt{y-2}}\)
\(\Rightarrow\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{x-2}+\sqrt{y-2}}< 0\)(2)
Từ (1) và (2) => x - y = 0
<=> x = y
Thay vào 1 trong 2 pt ban đầu có
\(\sqrt{x+1}+\sqrt{x-2}=3\)
\(\Leftrightarrow x+1+2\sqrt{\left(x+1\right)\left(x-2\right)}+x-2=9\)
\(\Leftrightarrow\sqrt{x^2-x-2}=5-x\)
\(\Leftrightarrow\hept{\begin{cases}x\le5\\x^2-x-2=25-10x+x^2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le5\\9x=27\end{cases}}\)
\(\Leftrightarrow x=3\left(tmĐKXĐ\right)\)
Vậy pt có nghiệm duy nhất x = 3