tìm gtln :
\(\frac{-x-2\sqrt{x}-2}{\sqrt{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2\sqrt{3}+\sqrt{5}\right).\sqrt{3}-\sqrt{60}\)
\(=\sqrt{3}.\left(2+\sqrt{3}+\sqrt{5}\right)-2\sqrt{15}\)
\(=2\sqrt{3}+3+\sqrt{15}-2\sqrt{15}\)
\(=2\sqrt{3}+3-\sqrt{15}\)
a) \(\sqrt{2x}=4\)
=>" x=2
b) \(4x=8\Leftrightarrow x=2\)
c)\(\sqrt{\left(x-3\right)^2}=6\)
\(x-3=6\)
\(\Rightarrow x=9\)
|7 + 5x| = 1 - 4x
=> \(\orbr{\begin{cases}7+5x=1-4x\left(đk:x\le\frac{1}{4}\right)\\7+5x=4x-1\left(đk:x\ge\frac{1}{4}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}7-1=-4x-5x\\7+1=4x-5x\end{cases}}\)
=> \(\orbr{\begin{cases}6=-9x\\8=-x\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{2}{3}\left(tm\right)\\x=-8\left(ktm\right)\end{cases}}\)
|4x2 - 2x| + 1 = 2x
=> |4x2 - 2x| = 2x - 1
=> \(\orbr{\begin{cases}4x^2-2x=2x-1\left(đk:x\ge\frac{1}{2}\right)\\4x^2-2x=1-2x\left(đk:x\le\frac{1}{2}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}4x^2-2x-2x+1=0\\4x^2-2x-1+2x=0\end{cases}}\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\4x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\x^2=\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\pm\frac{1}{2}\end{cases}}\)(tm)
Vậy ...
a) \(\frac{3}{2\sqrt{3}}=\frac{3}{2.3^{\frac{1}{2}}}=\frac{3^{1-\frac{1}{2}}}{2}=\frac{3^{\frac{1}{2}}}{2}=\frac{\sqrt{3}}{2}\)
b) \(\frac{5}{2\sqrt{3}}=\frac{5\sqrt{3}}{2\sqrt{3}.\sqrt{3}}=\frac{5\sqrt{3}}{6}\)
Câu hỏi của Trần Thanh Phương - Toán lớp 9 | Học trực tuyến
Tự lực cánh sinh thôi...