K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

A B C M N D E

Ta có ^MEN = ^NBD + ^MCD = 1800 - ^MAN. Suy ra tứ giác AMEN nội tiếp

Cũng dễ có tứ giác BCMN nội tiếp đường tròn (BC)

Từ đó ^AEM = ^ANM = ^MCB = ^MCD = 1800 - ^MED. Hay ^AEM + ^MED = 1800

Vậy thì A,E,D thẳng hàng (đpcm).

27 tháng 2 2020

Ta có ^BCN = ^BMN ( do tứ giác BNMC nội tiếp )

=> ^NBC = ^AMN  ( cùng phụ với hai góc bằng nhau ) (1)

Mặt khác do BDEN và CDEM là các tứ giác nội tiếp chung cạnh DE

Nên ^NBD + ^MCD = ^NEM  ( tính chất góc ngoài tứ giác nội tiếp )

Mà ^NBD + ^MCD + ^NAM = 1800

Suy ra ^NEM + ^NAM = 1800 .  Vây AMEN nội tiếp

Do đó: ^AMN = ^AEN  (2)

Từ (1) và (2) suy ra ^NBD = ^AEN

Mà ^NBD + ^DEN = 1800 (do BDEN nội tiếp)

Nên ^DEN + ^AEN = 1800  => ^AED=1800 .

Vậy ba điểm A, E, D thẳng hàng (đpcm)

4 tháng 8 2019

O H D E F A B C Q

+) Theo tính chất hai tiếp tuyến giao nhau thì AE = AF

Có ^CDQ = ^BDC/2 = (1800 - ^BAC)/2 = ^AFE (Vì \(\Delta\)AEF cân tại A)

Suy ra tứ giác QFCD nội tiếp (đpcm).

+) Chứng minh tương tự ta có tứ giác DQEB nội tiếp

Do đó ^DCQ = ^DFQ = ^DEB = ^DQB. Kết hợp với ^QDC = ^BDQ

Suy ra \(\Delta\)DQC ~ \(\Delta\)DBQ (g.g). Vậy thì \(\frac{DQ}{DB}=\frac{DC}{DQ}\Rightarrow QD^2=DB.DC\)(đpcm).

3 tháng 8 2019

Câu hỏi của TRẦN HỮU ĐẠT - Toán lớp 9 - Học toán với OnlineMath