Cho tam giác ABC nhọn có trực tâm H. Gọi M,N lần lượt là chân đường cao hạ từ B,C của tam giác ABC. Lấy D thuộc BC( D khác B,C), E là giao điểm của đường tròn ngoại tiếp tam giác CDM và đường tròn ngoại tiếp tam giác BDN(E khác B). CMR: A,E,D thẳng hàng
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4 tháng 8 2019
+) Theo tính chất hai tiếp tuyến giao nhau thì AE = AF
Có ^CDQ = ^BDC/2 = (1800 - ^BAC)/2 = ^AFE (Vì \(\Delta\)AEF cân tại A)
Suy ra tứ giác QFCD nội tiếp (đpcm).
+) Chứng minh tương tự ta có tứ giác DQEB nội tiếp
Do đó ^DCQ = ^DFQ = ^DEB = ^DQB. Kết hợp với ^QDC = ^BDQ
Suy ra \(\Delta\)DQC ~ \(\Delta\)DBQ (g.g). Vậy thì \(\frac{DQ}{DB}=\frac{DC}{DQ}\Rightarrow QD^2=DB.DC\)(đpcm).
NH
0
L
0
DN
0
NH
0
DN
0
3 tháng 8 2019
Câu hỏi của TRẦN HỮU ĐẠT - Toán lớp 9 - Học toán với OnlineMath
Ta có ^MEN = ^NBD + ^MCD = 1800 - ^MAN. Suy ra tứ giác AMEN nội tiếp
Cũng dễ có tứ giác BCMN nội tiếp đường tròn (BC)
Từ đó ^AEM = ^ANM = ^MCB = ^MCD = 1800 - ^MED. Hay ^AEM + ^MED = 1800
Vậy thì A,E,D thẳng hàng (đpcm).
Ta có ^BCN = ^BMN ( do tứ giác BNMC nội tiếp )
=> ^NBC = ^AMN ( cùng phụ với hai góc bằng nhau ) (1)
Mặt khác do BDEN và CDEM là các tứ giác nội tiếp chung cạnh DE
Nên ^NBD + ^MCD = ^NEM ( tính chất góc ngoài tứ giác nội tiếp )
Mà ^NBD + ^MCD + ^NAM = 1800
Suy ra ^NEM + ^NAM = 1800 . Vây AMEN nội tiếp
Do đó: ^AMN = ^AEN (2)
Từ (1) và (2) suy ra ^NBD = ^AEN
Mà ^NBD + ^DEN = 1800 (do BDEN nội tiếp)
Nên ^DEN + ^AEN = 1800 => ^AED=1800 .
Vậy ba điểm A, E, D thẳng hàng (đpcm)