Giải phương trình : \(x^2-x+2\sqrt{x^3+1}=2\sqrt{x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
\(=\left(\frac{-x+1}{\sqrt{2}}\right)^2.\frac{-2x-2\sqrt{x}}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}\)
\(=\frac{-2x-2\sqrt{x}}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}.\frac{\left(-x+1\right)^2}{2}\)
\(=\frac{\left(-2x-2\sqrt{x}\right)\left(1-x\right)^2}{\left(x-1\right)\left(x+2\sqrt{x}+1\right).2}\)
\(=\frac{\left(-2x-2\sqrt{x}\right)\left(-x+1\right)}{2\left(x+2\sqrt{x}+1\right)}\)
\(=\frac{2\left(x+\sqrt{x}\right)\left(-x+1\right)}{2\left(x+2\sqrt{x}+1\right)}\)
\(=\frac{\left(x+\sqrt{x}\right)\left(-x+1\right)}{\left(x+2\sqrt{x}+1\right)}\)
\(=\frac{\left(x+\sqrt{x}\right)\left(-x+1\right)}{x+2\sqrt{x}+1}\)
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{5-\sqrt{5}}{1-\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}.\)
\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{5}-1\right)}{1-\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}.\)
\(=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}.\)
\(=\left(\left(-\sqrt{7}\right)+\left(-\sqrt{5}\right)\right)\cdot\frac{\sqrt{7}-\sqrt{7}}{1}\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\cdot\frac{\sqrt{7}-\sqrt{5}}{1}\)
\(=\frac{-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{1}\)
\(=\frac{-\left(7-5\right)}{1}=-2\)
Đặt G là trung điểm HC, DG cắt HE tại I.
Dễ thấy \(\Delta\)AHB ~ \(\Delta\)CHD (g.g) với trung tuyến tương ứng BK,DG. Suy ra \(\Delta\)BHK ~ \(\Delta\)DHG (c.g.c)
Suy ra ^HBK = ^HDG = ^HDI (1)
Áp dụng ĐL Melelaus cho \(\Delta\)GCD và 3 điểm E,I,H có \(\frac{ED}{EC}.\frac{IG}{ID}.\frac{HC}{HG}=1\)
Bởi vì \(\frac{ED}{EC}=\frac{1}{2};\frac{HC}{HG}=2\)nên \(\frac{IG}{ID}=1\)hay I là trung điểm GD
Ta thấy \(\Delta\)DGH vuông tại H có trung tuyến HI nên ^HDI = ^DHI (2)
Từ (1) và (2) suy ra: ^HBK = ^DHI = ^FHK. Chú ý rằng HK là tiếp tuyến của (BH)
Do đó ^HBK = ^FHK = ^HBF. Mà F,K cùng phía so với HB nên tia BF trùng tia BK
Vậy ba điểm B,F,K thẳng hàng (đpcm).
đặt \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{cases}\left(a,b\ge0\right)}\)
\(\Rightarrow\hept{\begin{cases}x^2-x+1=b^2\\\sqrt{x^3+1}=\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=ab\end{cases}}\)
PT tương đương với :
\(x^2-x+1+2\sqrt{\left(x+1\right)\left(x^2-x+1\right)}-1=2\sqrt{x+1}\)
\(\Leftrightarrow b^2+2ab-1=2a\Leftrightarrow b^2+2ab+a^2=a^2+2a+1\)
\(\Leftrightarrow\left(a+b\right)^2=\left(a+1\right)^2\Leftrightarrow\orbr{\begin{cases}a+b=a+1\\a+b=-\left(a+1\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}b=1\\loai\left(VT\ge0;VP< 0\right)\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-x+1}=1\Leftrightarrow x^2-x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}\left(tm\right)}\)
Vậy ...