Chứng minh rằng : \(\dfrac{a^4+b^4}{2}\) lớn hơn hoặc bằng \((\dfrac{a+b}{2})^4 \)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:x\ne\pm3\)
\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\)\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x+3+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow x+3+x\left(x-3\right)=2\)\(\Leftrightarrow x+3+x^2-3x=2\)
\(\Leftrightarrow x+3+x^2-3x-2=0\)\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)\(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)( thoả mãn ĐKXĐ )
Vậy tập nghiệm của phương trình là \(S=\left\{1\right\}\)
b) \(x^2-1=\left|x+1\right|\)(1)
TH1: Nếu \(x+1< 0\)\(\Leftrightarrow x< -1\)
\(\Rightarrow\left|x+1\right|=-\left(x+1\right)\)
(1) \(\Leftrightarrow x^2-1=-\left(x+1\right)\)\(\Leftrightarrow x^2-1+x+1=0\)
\(\Leftrightarrow x^2+x=0\)\(\Leftrightarrow x\left(x+1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
So sánh với ĐK ta thây không có giá trị nào của x thoả mãn
TH2: Nếu \(x+1\ge0\)\(\Leftrightarrow x\ge-1\)
\(\Rightarrow\left|x+1\right|=x+1\)
(1) \(\Leftrightarrow x^2-1=x+1\)\(\Leftrightarrow x^2-1-x-1=0\)
\(\Leftrightarrow x^2-x-2=0\)\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
So sánh với ĐKXĐ ta thấy cả 2 giá trị của x đều thoả mãn
Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)
\(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}\left(x\ne\pm3\right)\)
\(\Leftrightarrow\frac{1}{x-3}+\frac{x}{x+3}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}-\frac{2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x+3+x^2-3x-2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2-2x+1}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
<=> x-1=0
<=> x=1 (tmđk)
\(24x-4\left(2x-\frac{3}{4}\right)-4\left(3+\frac{2x}{2}\right)=36-3\left(x-\frac{3}{2}\right)-3\left(3-\frac{2x}{3}\right)\)
Đề như này đúng không bạn
Vì tam giác PAB đồng dạng với tam giác PCA (gt) =>\(\frac{PA}{PC}\)=\(\frac{PB}{PA}\)=\(\frac{AB}{CA}\)=\(\frac{4}{3}\)
=>\(\frac{PA}{PC}\)=\(\frac{4}{3}\)=>PA=\(\frac{4PC}{3}\)
Ta có :\(\frac{PB}{PA}\)=\(\frac{4}{3}\)<=> \(\frac{7+PC}{PA}\)=\(\frac{4}{3}\) <=>\(\frac{7+PC}{\frac{4PC}{3}}\)=\(\frac{4}{3}\) <=> PC=9
Vậy độ dài cạnh PC cần tìm là 9 (đvđd)
hình tự vẽ nhé
do PK // BD =) áp dụng định lí ta-lét vào tam giác CBD được: CP/PB = CK/KD (1)
dễ dàng chứng minh được tứ giác ABKD là hình bình hành =) KD=AB và AD=BK
tương tự tứ giác ABCI cũng là hình bình hành =) AI =BC
có góc PKC= góc BDC (PK//BD)
góc BDA=góc BKP (cùng = DBK)
góc AID=góc BCK
dễ dàng =) góc ADI = góc BCK
=) góc DAI = góc KBC
=) tam giác DAI = tam giác KBC (c-g-c) =) DI=KC
vì AB//DI nên áp dụng hệ quả của định lí ta-lét đc: DI/AB=DM/MB=KC/KD (2)
từ (1) và (2) =) BM/MD = BP/PC
áp dụng định lí ta lét đảo =) MP//DC
chưa hiểu thì hỏi nhé
điều kiện: x khác m và -m
quy đồng bỏ mẫu thì bn đc:
(1-x)(x+m) + (x-2)(x-m)= 2-2(x-m)
=) x(1-2m)=2-m (1)
để pt đã cho vô nghiệm thì (1) cũng phải vô nghiệm
vậy (1) vô nghiệm khi 1-2m= 0 và 2-m khác 0
=) m=1/2
vậy ...
Ta có: \(n^5-n=n\left(n^4-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
= \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
+) vì n ( n - 1) chia hết cho 2 và (n - 1) n ( n+1 ) chia hết cho 3
=> n ( n - 1 ) ( n + 1 ) chia hết cho 6
nên \(n^5-n=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮6\)
+) Vì \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\) và \(5n\left(n-1\right)\left(n+1\right)⋮5\)
=> \(n^5-n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)
Mà ( 5; 6 ) = 1 và 5.6 = 30
=> \(n^5-n⋮30\) với mọi số tự nhiên n
=> \(\left(2^{3n+1}+2^n\right)\left(n^5-n\right)⋮30\) với mọi số tự nhiên n
Áp dụng liên tiếp BĐT \(\frac{\left(x+y\right)^2}{2}\le x^2+y^2\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)
\(\left(\frac{a+b}{2}\right)^4=\left(\frac{\frac{\left(a+b\right)^2}{2}}{2}\right)^2\le\left(\frac{a^2+b^2}{2}\right)^2=\left(\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\right)\le\frac{a^4+b^4}{2}\)
Dấu "=" xảy ra tại a=b
Vậy..................