Cho ΔABC vuông tại A. Biết AB = 3cm, BC = 5cm
a. Giải tam giác vuông ABC
b. Từ B kẻ đường thẳng vuông góc với BC, đường thẳng này cắt AC tại D. Tính độ dài đoạn thẳng AD, BD
c. Gọi E, F lần lượt là hình chiếu của A trên BC và BD. Chứng minh BF.BD = BE.BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Ta có :
\(\cot41=\tan49\) ; \(\cot46=\tan44\)
sắp xếp :\(\tan27< \tan44< \tan47< \tan49\)\(\Rightarrow\tan27< \cot46< \tan47< \cot41\)
2.ta có
\(\cos28=\sin62;\cos41=\sin49\)
\(A=\cos^228+\cos^241+\cos^262+\cos^249\)
\(\Rightarrow A=\sin^262+\cos^262+\sin^249+\cos^249\)
\(\Rightarrow A=1+1=2\)
tỉ muội còn nhớ mon ko.mon ăn kiêng sau vài tháng đã biến thành hotboy lun...>_<
a) \(VT=1+tan^2a=1+\frac{sin^2a}{cos^2a}\)
\(=\frac{cos^2a+sin^2a}{cos^2a}=\frac{1}{cos^2a}=VP\)(Đồng thời áp dụng định lý Py - ta - go)
b) \(VT=1+cot^2a=1+\frac{cos^2a}{sin^2a}\)
\(=\frac{sin^2a+cos^2a}{sin^2a}=\frac{1}{sin^2a}=VP\)(Đồng thời áp dụng định lý Py - ta - go)
Vẽ tam giấc ABC có tan a = AC/AB (1)
suy ra sin a = AC/BC
cos a = AB/BC
suy ra sin a/cos a = AC/BC : AB/BC = AC/AB (2)
Từ 1 và 2 suy ra tan a = sin a / cos a
a) Vẽ \(\Delta ABC\)vuông tại A
Lúc đó \(sina=\frac{AB}{BC}\)
\(sina=\frac{AB}{BC}\)
\(\Rightarrow\frac{sina}{cosa}=\frac{\frac{AB}{BC}}{\frac{AC}{BC}}=\frac{AB}{AC}=tana\left(đpcm\right)\)
b) \(sina=\frac{AB}{BC}\); \(cosa=\frac{AC}{BC}\)
\(\Rightarrow\frac{cosa}{sina}=\frac{\frac{AC}{BC}}{\frac{AB}{BC}}=\frac{AC}{AB}=cota\left(đpcm\right)\)
Vẽ \(\Delta ABC\)vuông tại A
Lúc đó: \(sina=\frac{AB}{BC}\Rightarrow sin^2a=\frac{AB^2}{BC^2}\)
\(cosa=\frac{AC}{BC}\Rightarrow cos^2a=\frac{AC^2}{BC^2}\)
\(\Rightarrow sin^2a+cos^2=\frac{AB^2+AC^2}{BC^2}=1\)(Áp dụng định lý Py - ta - go)
Vẽ \(\Delta ABC\)vuông tại A
Lúc đó \(tana=\frac{AC}{AB}\)
\(cota=\frac{AB}{AC}\)
\(\Rightarrow tana.cota=\frac{AC}{AB}.\frac{AB}{AC}=1\left(đpcm\right)\)