K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

hợp lý

hay dong nao di nao

14 tháng 4 2020

ngu thì câm

30 tháng 4 2020

Ta có:

\(x\sqrt{y}-y\sqrt{x}=\sqrt{x}\cdot\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\le\sqrt{x}\left(\frac{\sqrt{y}+\sqrt{x}-\sqrt{y}}{2}\right)^2\le\frac{x}{4}\le\frac{1}{4}\)(BĐT AM-GM)

Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x=1\\\sqrt{y}=\sqrt{x}-\sqrt{y}\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{4}\end{cases}}}\)

13 tháng 4 2020

Áp dụng bất đẳng thức cô si cho 3 sô dương ta có

\(1+x^3+y^3\ge3\sqrt[3]{1.x^3.y^3}=3xy\Leftrightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3}}{\sqrt{xy}}\left(1\right)\)

tương tự

\(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}}\left(2\right);\frac{\sqrt{1+z^3+x^3}}{xz}\ge\frac{\sqrt{3}}{\sqrt{xz}}\left(3\right)\)

mặt khác \(\frac{\sqrt{3}}{\sqrt{xy}}+\frac{\sqrt{3}}{\sqrt{yz}}+\frac{\sqrt{3}}{\sqrt{zx}}\ge3\sqrt[3]{\frac{\sqrt{3}}{\sqrt{xy}}+\frac{\sqrt{3}}{\sqrt{yz}}+\frac{\sqrt{3}}{\sqrt{zx}}}\Rightarrow\frac{\sqrt{3}}{\sqrt{xy}}+\frac{\sqrt{3}}{\sqrt{yz}}+\frac{\sqrt{3}}{\sqrt{zx}}\ge3\sqrt{3}\left(4\right)\)

Cộng các BĐT 1,2,3,4 ta đc đpcm

Đẳng thức xảy ra khi (1) (2) (3) (4) là các đẳng thức <=> x=y=z=1

nguồn : ĐH 2005A-db1

13 tháng 4 2020

mình trả lời r mà sao chưa hiện ra thế nhỉ ??

13 tháng 4 2020

Do \(a\ge1,d\le50\left(and\right)c>b\left(c,b\in N\right)nên\left(c\ge b+1\right)\)thành thử

\(S=\frac{a}{b}+\frac{c}{d}\ge\frac{1}{b}+\frac{b+1}{50}=\frac{b^2+b+50}{50b}\)

zậy BĐT của đề ra đc CM 

dấu = xảy ra khi \(\hept{\begin{cases}a=1\\d=50\\c=b+1\end{cases}.}\)

ĐỂ tìm minS ta đặt

\(\frac{b^2+b+50}{50b}=\frac{b}{50}+\frac{1}{b}+\frac{1}{50}\)zà xét hàm số có biến số liên tục x 

\(f\left(x\right)=\frac{x}{50}+\frac{1}{x}+\frac{1}{50}\left(2\le x\le48\right)\)

\(f'\left(x\right)=\frac{1}{50}-\frac{1}{x^2}=\frac{x^2-50}{50x^2};f'\left(x\right)=0\hept{\begin{cases}x^2=50\\2\le x\le48\end{cases}\Leftrightarrow x=5\sqrt{2}}\)

Ta có bảng biến thiên 

x     2         \(5\sqrt{2}\)  48
f'(x)     -          0      +
f(x)\(\rightarrow\)minf(x )     )\(\rightarrow\)

chuyển zế biểu thức 

\(f\left(b\right)=\frac{b^2+b+50}{50b}\left(2\le b\le48,b\in N\right)\)

từ BBT suy ra b biến thiên từ 2 đến 7 , f(b) giảm rồi chuyển sang tăng khi b biến thiên  từ 8 đến 48 . suy ra minf(b) = min[f(7) ;f(8)]

ta có 

\(\hept{\begin{cases}f\left(7\right)=\frac{49+57}{350}=\frac{53}{175}\\f\left(8\right)=\frac{64+58}{400}=\frac{61}{200}>\frac{53}{175}\end{cases}}\)

zậy min S = 53/175 khi a=1 , b=7 , c=8 , d=50\

nguồn đại học học 2002 dự bị 5

13 tháng 4 2020

ta có \(\sqrt[3]{3a+1}=\frac{\sqrt[3]{\left(3a+1\right)2.2}}{\sqrt[3]{4}}\le\frac{3a+1+2+2}{3\sqrt[3]{4}}=\frac{3a+5}{3\sqrt[3]{4}}\)

tương tự \(\hept{\begin{cases}\sqrt[3]{3b+1}\le\frac{3b+5}{3\sqrt[3]{4}}\\\sqrt[3]{3c+1}\le\frac{3c+5}{3\sqrt[3]{4}}\end{cases}}\)

\(=>P\le\frac{3\left(a+b+c\right)+15}{3\sqrt[3]{4}}=\frac{6}{\sqrt[3]{4}}=3\sqrt[3]{2}\)

13 tháng 4 2020

FD//EG

Áp dụng định lý Ta let ta có: 

\(\frac{AD}{AE}=\frac{AF}{AG}\) (1)

FE // GH

Áp dụng định lý Ta lét ta có: 

\(\frac{AE}{AH}=\frac{AF}{AG}\) (2)

Từ (1) và (2) => \(\frac{AD}{AE}=\frac{AE}{AH}\)

=> AE²=AD.AH (đpcm)

Nguồn:  nttxyhthkbgd1