K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2023

a) Ta thấy đa thức \(f\left(x\right)=4x^2+81\) vô nghiệm (*).

 Giả sử \(f\left(x\right)\) có thể phân tích được thành nhân tử, khi đó \(f\left(x\right)=\left(ax+b\right)\left(cx+d\right)\), suy ra \(f\) có nghiệm là \(x=-\dfrac{b}{a}\) hoặc \(x=-\dfrac{d}{c}\), mâu thuẫn với (*).

 Vậy ta không thể phân tích \(f\left(x\right)\) thành nhân tử.

b) \(g\left(x\right)=x^7+x^2+1\)

\(g\left(x\right)=x^7-x+x^2+x+1\)

\(g\left(x\right)=x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(g\left(x\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(g\left(x\right)=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(g\left(x\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

 Xét \(h\left(x\right)=x^5-x^4+x^2-x+1\), nếu \(h\left(x\right)\) phân tích được thành nhân tử thì nó có nghiệm hữu tỉ. Khi đó nó có dạng \(x=\dfrac{p}{q},\left(p,q\inℤ;\left(p,q\right)=1\right),p|1,q|1\) \(\Rightarrow x=\pm1\). Ta thấy \(h\left(1\right).h\left(-1\right)\ne0\) nên 2 nghiệm này không thỏa mãn. Vậy h(x) không có nghiệm hữu tỉ \(\Rightarrow\) g(x) không thể phân tích tiếp.

19 tháng 10 2023

a)

\(4x^2+81\\=(2x)^2+2\cdot2x\cdot9+9^2-36x\\=(2x+9)^2-36x\)

Bạn xem lại đề bài nhé!

b)

\(x^7+x^2+1\\=(x^7+x^6+x^5)-x^6-x^5-x^4+(x^4+x^3+x^2)-(x^3-1)\\=x^5(x^2+x+1)-x^4(x^2+x+1)+x^2(x^2+x+1)-(x-1)(x^2+x+1)\\=(x^2+x+1)(x^4-x^4+x^2-x+1)\)

19 tháng 10 2023

\(x^2+4y^2+z^2-2x-6z+8y+14=0\\\Leftrightarrow (x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)=0\\\Leftrightarrow (x^2-2\cdot x\cdot1+1^2)+[(2y)^2+2\cdot2y\cdot 2+2^2]+(z^2-2\cdot z\cdot3+3^2)=0\\\Leftrightarrow (x-1)^2+(2y+2)^2+(z-3)^2=0\)

Ta thấy: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(2y+2\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{matrix}\right.\)

\(\Rightarrow\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2\ge0\forall x;y;z\)

Mặt khác: \(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2=0\)

nên ta được: 

\(\left\{{}\begin{matrix}x-1=0\\2y+2=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\\z=3\end{matrix}\right.\)

Vậy: ...

19 tháng 10 2023

\(x^2+4y^2+z^2-2x-6z+8y+14=0\)

\(\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)=0\)

\(\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2=0\) (1)

Do \(\left(x-1\right)^2\ge0;\left(2y+2\right)^2\ge0;\left(z-3\right)^2\ge0\)

\(\left(1\right)\Rightarrow\) \(\left(x-1\right)^2=0;\left(2y+2\right)^2=0;\left(z-3\right)^2=0\)

*) \(\left(x-1\right)^2=0\)

\(x-1=0\)

\(x=1\)

*) \(\left(2y+2\right)^2=0\)

\(2y+2=0\)

\(2y=-2\)

\(y=-1\)

*) \(\left(z-3\right)^2=0\)

\(z-3=0\)

\(z=3\)

Vậy x = 1; y = -1; z = 3

19 tháng 10 2023

a) \(x=-2\Rightarrow A=\dfrac{4}{\left(-2\right)^2+\left(-2\right)+1}=\dfrac{4}{3}\)

b) \(A=B+C\Rightarrow C=A-B\)

\(=\dfrac{4}{x^2+x+1}-\left(\dfrac{2}{1-x}+\dfrac{2x^2+4x}{x^3-1}\right)\)

\(=\dfrac{4}{x^2+x+1}-\dfrac{2}{1-x}-\dfrac{2x^2+4x}{x^3-1}\)

\(=\dfrac{4}{x^2+x+1}+\dfrac{2}{x-1}-\dfrac{2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{4\left(x-1\right)+2\left(x^2+x+1\right)-2x^2-4x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{4x-4+2x^2+2x+2-2x^2-4x}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{2}{x^2+x+1}\)

Vậy \(C=\dfrac{2}{x^2+x+1}\)

19 tháng 10 2023

\(V_{S.MNPQ}=\dfrac{1}{3}.S_{MNPQ}.SO\)

\(\Rightarrow S_{MNPQ}=\dfrac{3.V_{S.MNPQ}}{SO}=\dfrac{3.1280}{15}=256cm^2\)

Xét tg vuông SOI

\(OI=\sqrt{SI^2-SO^2}\) (Pitago)

\(\Rightarrow OI=\sqrt{17^2-15^2}=8cm\)

Ta có

\(OI=\dfrac{MN}{2}\Rightarrow MN=2.OI=2.8=16cm\)

19 tháng 10 2023

Ta có:

\(V=\dfrac{1}{3}.S_{MNPQ}.15=1280\left(cm^3\right)\)

\(\Rightarrow S_{MNPQ}=\dfrac{1280.3}{15}=256\left(cm^2\right)\)

\(\Rightarrow MN=\sqrt{256}=16\left(cm\right)\)

19 tháng 10 2023

a) Tứ giác ABCD có:

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\) (tổng các góc trong tứ giác ABCD)

Gọi \(x,y,z,t\) lần lượt là số đo các góc: \(\widehat{A},\widehat{B},\widehat{C},\widehat{D}\) \(\left(x,y,z,t>0\right)\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{t}{4}=\dfrac{x+y+z+t}{1+2+3+4}=\dfrac{360^0}{10}=36^0\)

\(\dfrac{y}{2}=36^0\Rightarrow y=2.36^0=72^0\) (nhận)

Vậy \(\widehat{B}=72^0\)

b) Đường chéo của màn hình điện thoại:

\(\sqrt{7^2+15,5^2}\simeq17\left(cm\right)\) \(\simeq17.2,54\simeq43\left(inch\right)\)

19 tháng 10 2023

Thể tích của khúc gỗ là: 30.30.30 = 27 000 (cm3)

Thể tích của hình chóp từ giác đều là: 30.30.30.1/3 = 9 000 (cm3)

Thể tích của phần gỗ bị cắt đi là: 27 000 - 9 000 = 18 000 (cm3)

19 tháng 10 2023

a) 

loading...  Ta có:

∠ABC + ∠CBm = 180⁰ (kề bù)

⇒ ∠ABC = 180⁰ - ∠CBm

= 180⁰ - 70⁰

= 110⁰

Tứ giác ABCD có:

∠A + ∠ABC + ∠C + ∠D = 360⁰ (tổng bốn góc trong tứ giác ABCD)

⇒ 3x + 110⁰ + x + 90⁰ = 360⁰

⇒ 4x + 200⁰ = 360⁰

⇒ 4x = 360⁰ - 200⁰

4x = 160⁰

⇒ x = 160⁰ : 4

⇒ x = 40⁰

b) ∆ABH vuông tại H

⇒ AB² = AH² + BH² (Pytago)

⇒ AH² = AB² - BH²

= 3,7² - 1,2²

= 12,25

⇒ AH = 3,5

⇒ AH/BH = 3,5/1,2 ≈ 2,9 > 2,2

Vậy thang cách chân tường không "an toàn"

19 tháng 10 2023

`a,(x+y)^2`

`b, x^2-25`

`=x^2-5^2`

`=(x-5)(x+5)`

DT
19 tháng 10 2023

a) (x+y)^{2}=x^2+2xy+y^2

b) x^2 -25=x^2 - 5^2=(x-5)(x+5)

Bài 5. (1 điểm) Trong lĩnh vực khí tượng học, người ta sử dụng chỉ số nhiệt để mô tả mức độ nóng của không khí ngoài trời (chỉ số nhiệt càng lớn thì không khí càng nóng). Để tính chỉ số nhiệt, các nhà khí tượng học sử dụng đa thức sau: $I = -45 + 2x + 10y - 0,2xy - 0,007x^2 - 0,05y^2 + 0,001x^2y + 0,009xy^2 - 0,000002x^2y^2$, trong đó $I$ là chỉ số nhiệt, $x$ là độ ẩm ($\%$) và $y$ là nhiệt độ...
Đọc tiếp

Bài 5. (1 điểm) Trong lĩnh vực khí tượng học, người ta sử dụng chỉ số nhiệt để mô tả mức độ nóng của không khí ngoài trời (chỉ số nhiệt càng lớn thì không khí càng nóng). Để tính chỉ số nhiệt, các nhà khí tượng học sử dụng đa thức sau:

$I = -45 + 2x + 10y - 0,2xy - 0,007x^2 - 0,05y^2 + 0,001x^2y + 0,009xy^2 - 0,000002x^2y^2$,

trong đó $I$ là chỉ số nhiệt, $x$ là độ ẩm ($\%$) và $y$ là nhiệt độ ($^{\circ}$F) của không khí

(nguồn: https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml ).

a) Tại một thời điểm, thành phố $A$ có độ ẩm là $40\%$ và nhiệt độ của không khí là $100^{\circ}$F. Tính chỉ số nhiệt của thành phố $A$. (ghi kết quả dưới dạng số thập phân)

b) Cũng vào thời điểm đó, thành phố $B$ có độ ẩm là $50\%$ và nhiệt độ của không khí là $90^{\circ}$F. Cho biết không khí ở thành phố nào nóng hơn tại thời điểm đó?

1
9 tháng 11 2023

a) Thay �=40 và �=100 vào  ta có​ chỉ số nhiệt của thành phố  là:

��= −45+2.40+10.100−0,2.40.100−0,007.402−0,05.1002+0,001.402.100+0,009.40.1002−0,000002.402.1002

=−45+80+1000−800−11,2−500+160+3600−32=3451,8.

b) Thay �=50 và �=90 vào  ta có​ chỉ số nhiệt của thành phố  là:

��= −45+2.50+10.90−0,2.50.90−0,007.502−0,05.902+0,001.502.90+0,009.50.902−0,000002.502.902

=−45+100+900−900−17,5 −405+160+3645−25,92 =3411,58<��.

Vậy không khí ở thành phố  nóng hơn tại thời điểm đó

DT
19 tháng 10 2023

a) Hệ số : -13,5

Biến : xyz

Bậc : 1+1+1=3

b) Nhóm 1 : 4x^3y^2, 9x^3y^2

Nhóm 2 : -0,5x^2y^3, 3/4x^2y^3