Tìm x, y nguyên biết \(2^y+8^2=x^2-4^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\left(x^2+y^2+z^2+xy+yz+xz\right)=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2\)
\(=\left(3-x\right)^2+\left(3-y\right)^2+\left(3-z\right)^2\)
\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)
\(=9+x^2+y^2+z^2\)
Dễ dàng CM được \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=3\)
=>\(2\left(x^2+y^2+z^2+xy+yz+zx\right)\ge12\)
=> dpcm
Ta có: \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\)
\(=2x^2+2y^2+2z^2+2xy+2yz+2xz\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)\)
\(=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)(1)
Mà \(x+y+z=3\Rightarrow\hept{\begin{cases}x+y=3-z\\y+z=3-x\\x+z=3-y\end{cases}}\)
\(\Rightarrow\left(1\right)=\left(3-z\right)^2+\left(3-x\right)^2+\left(3-y\right)^2\)
\(=9-6z+z^2+9-6x+x^2+9-6y+y^2\)
\(=27-6\left(x+y+z\right)+x^2+y^2+z^2\)
\(=9+x^2+y^2+z^2\)
Áp dụng BĐT Cauchy cho 3 số:
\(x^2+y^2+z^2=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{3^2}{3}=3\)
\(\Rightarrow9+x^2+y^2+z^2\ge12\)
hay \(2\left(x^2+y^2+z^2+xy+yz+xz\right)\ge12\)
\(\Leftrightarrow x^2+y^2+z^2+xy+yz+xz\ge6\left(đpcm\right)\)