Biết DE =40cm. a) tính DH, HE. b) tính CH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tiền trả góp trong 6 tháng là
\(2.100.000\cdot6=12600000\left(VNĐ\right)\)
Chiếc xe đạp điện là
\(12600000:30\%=42000000\left(VNĐ\right)\)
Đáp sô 42000000 VNĐ
A=(\(\frac{x-2}{x+2\sqrt{x}}\)+\(\frac{1}{\sqrt{x}+2}\)).\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
A=(\(\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\)+\(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\)).\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
A=\(\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\).\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
A=\(\frac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\).\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
A=\(\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\).\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
A=\(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\).\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
A=\(\frac{\sqrt{x}-1}{\sqrt{x}}\).\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
A=\(\frac{\sqrt{x}+1}{\sqrt{x}}\)
Vậy............................
Goi PT duong thang cua \(\left(d^`\right)\) co dang la \(y=ax+b\)
Vi \(\left(d^`\right)\perp\left(d\right)\)
\(\Rightarrow2a=-1\)
\(\Leftrightarrow a=-\frac{1}{2}\)
\(\Rightarrow\left(d^`\right):y=-\frac{1}{2}x+b\)
Ma \(\left(d^`\right)\)giao voi diem co toa do la \(A\left(1;-1\right)\)
\(\Rightarrow-1=-\frac{1}{2}.1+b\)
\(\Leftrightarrow b=-\frac{1}{2}\)
\(\Rightarrow\left(d^`\right):y=-\frac{1}{2}x-\frac{1}{2}\)
\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}\left(\frac{2\sqrt{3}+\sqrt{18}+2\sqrt{3}-\sqrt{18}}{4-6}\right)-\frac{1}{\sqrt{2}}.\)
\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}-\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+1}.\left(2\sqrt{3}\right)-\frac{1}{\sqrt{2}}\)
\(=\frac{\sqrt{3}+\sqrt{2}-1}{2+\sqrt{6}}-\frac{2\sqrt{6}-6}{\sqrt{2}+1}-\frac{1}{\sqrt{2}}\)
\(x^2+y^2+z^2+2xyz=1\)
\(\Leftrightarrow2xyz=1-x^2-y^2-z^2\)
\(\Rightarrow P=xy+yz+xz-2xyz=xy+yz+xz+x^2+y^2+z^2-1\)
\(\Rightarrow2P=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2-2\ge1\)
\(\Rightarrow P\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
điều kiện x+3>=0 và 3-2x<=0 hay -3\(\le x\le\frac{3}{2}\) (1)
\(\sqrt{x+3}=a\);\(\sqrt{3-2x}=b\) => x=\(a^2-3\) và 2a2+b2=3
thay vào ta được x+4a+2b=11 <=>a2-3+4a+2b=11 <=>a2+4a+2b=14
ta có hệ phương trình \(\hept{\begin{cases}2a^2+b^2=9\\a^2+4a+2b=14\end{cases}}\)<=>\(\hept{\begin{cases}2a^2+b^2-a^2-4a-2b=3-14\\2a^2+b^2=9\end{cases}}\)<=>\(\hept{\begin{cases}\left(a-2\right)^2+\left(b-1\right)^2=0\\2a^2+b^2=9\end{cases}}\)<=>\(\hept{\begin{cases}a=2\\b=1\end{cases}}\)<=>\(\hept{\begin{cases}\sqrt{x+3}=2\\\sqrt{3-2x}=1\end{cases}}\)<=>x=1 (thỏa mãn điều kiện (1))
vậy pt có nghiệm duy nhất x=1
\(DK:x\in\left[-3;\frac{3}{2}\right]\)
PT\(\Leftrightarrow\left(x-1\right)+\left(4\sqrt{x+3}-8\right)+\left(2\sqrt{3-2x}-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)+\frac{4\left(x-1\right)}{\sqrt{x+3}+2}-\frac{4\left(x-1\right)}{\sqrt{3-2x}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(1+\frac{4}{\sqrt{x+3}+2}-\frac{4}{\sqrt{3-2x}+1}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(1\right)\\1+\frac{4}{\sqrt{x+3}+2}-\frac{4}{\sqrt{3-2x}+1}=0\left(2\right)\end{cases}}\)
PT(2) khac khong voi moi \(x\in\left[-3;\frac{3}{2}\right]\)
Vay nghiem cua PT la \(x=1\)
Bài 1 :
Gọi trung điểm của OA là H. Vì OA = BH \(\perp\) OA nên AB = OB. Ta có :
AB = OB = OA nên tam giác AOB là tam giác đều.
Vậy O = \(60^o\).
BH = BO. \(\sin60^o\) = 3. \(\frac{\sqrt{3}}{2}\),
BC = 2 BH = \(3\sqrt{3}\) ( cm )
Bài 2 :
a) Xét tam giác BEC vuông tại E có :
Góc BEC = \(90^o\)
\(\Rightarrow\) B, E, C thuộc vào đường tròn đường kính BC ( 1 )
Xét tam giác BDC có :
Góc BDC = \(90^o\)
\(\Rightarrow\) B, D, C thuộc đường tròn đường kính BC ( 2 )
\(\Rightarrow\) B, C, D, E cùng thuộc một đường tròn.
b) Xét tam giác BDC : ^ BDC = \(90^o\), mà trung điểm của BC = DO = BO = CO
Tương tự : EO = BO = CO
\(\Rightarrow\) DO = EO
\(\Rightarrow\) Tam giác EOD cân tại O.
Ta có : I là trung điểm của DE
\(\Rightarrow\) OI là đường trung tuyến, cũng là đường cao của tam giác EOD.
\(\Rightarrow\) OI vuông góc với DE
bài 1
gọi M là trung điểm OA => OM=OA:2=1,5cm
xét tam giác vuông BOM ta có MB2+OM2=OB2 <=>MB2+1,52=32 =>MB=\(\frac{3\sqrt{3}}{2}\)=>BC =2 MB = 3\(\sqrt{3}\)
bài 2
a)xét tam giác vuông CEB có O là trung điểm BC nên OE là đường trung tuyến => OB=OC=OE
tương tự tam giác CDB có OD là đường trung tuyến => OD=OB=OC
vậy OB=OC=OD=OE => cùng thuộc đường tròn tâm o bán kính BC/2
b) I là trung điểm DE nên OI là đường trung tuyến và tam giác ODE cân ở O nên OI vừa là trung tuyến vừa là đường cao nên OI vuông góc ED