giải phương trình: \(\left(2\sqrt{x+2}-\sqrt{4x+1}\right)\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chứng minh:
\(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)
tương tự như link: Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath
Ta có: \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\) (1 )
( => )
Cho \(a^3+b^3+c^3⋮6\)
(1) => \(a+b+c⋮6\)
( <= )
Cho: \(a+b+c⋮6\)
(1) => \(a^3+b^3+c^3⋮6\)
Vậy \(a^3+b^3+c^3⋮6\)<=> \(a+b+c⋮6\).
Áp dụng BĐT AM - GM ta có :
\(\frac{1}{x+1}\ge1-\frac{1}{1+y}+1-\frac{1}{1+z}=\frac{y}{y+1}+\frac{z}{z+1}\)
\(\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\) . Tương tự ta cũng có :
\(\frac{1}{y+1}\ge2\sqrt{\frac{xz}{\left(x+1\right)\left(z+1\right)}};\frac{1}{z+1}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)
Nhân theo vế 3 BĐT trên tra có :
\(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge8\sqrt{\frac{xyz}{\left(\left(x+1\right)\left(y+1\right)\left(z+1\right)\right)^2}}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge\frac{8xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(\Leftrightarrow1\ge8xyz\Leftrightarrow xyz\le\frac{1}{8}\)
Dấu " = " xảy ra khi \(x=y=z=\frac{1}{2}\)
Chúc bạn học tốt !!!
<=>\(\hept{\begin{cases}4x^2+2mx=2\\mx^2-x=-2\end{cases}}\)<=>\(\hept{\begin{cases}\left(4+m\right)x^2+\left(2m-1\right)x=0\\mx^2-x=-2\end{cases}}\)<=>\(\hept{\begin{cases}x\left(\left(m+4\right)x+2m-1\right)=0\\mx^2-x=-2\end{cases}}\)
<=> \(\hept{\begin{cases}x=0\\mx^2-x=-2\end{cases}}\)(vô nghiệm) hoặc \(\hept{\begin{cases}x=\frac{1-2m}{m+4}\\mx^2-x=-2\end{cases}}\)(điều kiện m\(\ne-4\)) <=>m(\(\frac{1-2m}{m+4}\))2-\(\frac{1-2m}{m+4}\)=-2 <=> m(1-2m)2-(1-2m)(m+4)=-2(m+4)2 <=> 4m3-4m2+m-m+2m2-4+8m=-2m2-16m-32 <=> 4m3+24m+28=0
<=> (m+1)(4m2-4m+28)=0 <=>m+1=0 (vì 4m2-4m+28=(2m-1)2+27>0) <=> m=-1 (thỏa mãn m\(\ne-4\))
Vậy m=-1
A B C M U V D E F p p p q q
Gọi tiếp điểm giữa đường tròn nội tiếp \(\Delta\)ABC với BC,CA,AB lần lượt là D,E,F; BM cắt đường tròn này tại U,V.
Đặt \(BC=m;CA=n;BU=UV=VM=p;AE=AF=q\left(m,n,p,q>0;q< x\right)\)
Áp dụng phương tích đường tròn ta có: \(BF^2=ME^2=2p^2\Rightarrow AB=AM=\frac{n}{2}\)hay \(n=2x\)
Đồng thời \(CD=CE=2x-q;BD=BF=x-q\Rightarrow m=3x-2q;p^2=\frac{\left(x-q\right)^2}{2}\)
Từ đó; áp dụng công thức đường trung tuyến, ta có:
\(\frac{9}{2}\left(x-q\right)^2=\frac{x^2+\left(3x-2q\right)^2}{2}-x^2\Leftrightarrow x^2-6xq+5q^2=0\Leftrightarrow\orbr{\begin{cases}q=x\left(l\right)\\q=\frac{x}{5}\end{cases}}\)
Do vậy \(m=3x-\frac{2}{5}x=\frac{13}{5}x\)
Áp dụng công thức Heron vào \(\Delta\)ABC, ta thu được: \(S_{ABC}=\sqrt{x^4.\frac{14}{5}.\frac{9}{5}.\frac{4}{5}.\frac{1}{5}}=\frac{6\sqrt{14}}{25}x^2.\)
gọi M;N;K là hình chiếu của A;B;C trên BC;AC;AB
A B C M K N H
Xét tan giác BHK và tam giác CHN là 2 tam giác đồng dạng (dễ dàng chứng minh) =>\(\frac{KH}{HB}=\frac{HN}{HC}< =>KH.HC=HB.HN\)
AB2=BN2+NA2=(BH+HN)2+HA2-HN2=BH2+2BH.HN+HA2=BH2+2CH.HK+HA2
AC2=AK2+KC2=(CH+HK)2+AH2-HK2=CH2+2CH.HK+AH2
BC2=CK2+KB2=(CH+HK)2+HB2-KH2=CH2+2CH.HK+HB2
=> AB2+HC2=AC2+HB2=BC2+HA2= CH2+2CH.HK+HB2+HA2
Đk: \(x\ge2\)
pt <=> \(\frac{4\left(x+2\right)-\left(4x+1\right)}{2\sqrt{x+2}+\sqrt{4x+1}}\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\)
<=> \(\frac{7}{2\sqrt{x+2}+\sqrt{4x+1}}\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\)
<=> \(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)(1)
Đặt : \(t=2\sqrt{x+2}+\sqrt{4x+1}\ge0\)
Ta có: \(t^2=8x+9+4\sqrt{4x^2+9x+2}\)<=> \(2x+3+\sqrt{4x^2+9x+2}=\frac{t^2+3}{4}\)
Phương trình (1) trở thành: \(\frac{t^2+3}{4}=t\Leftrightarrow t^2-4t+3=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=1\end{cases}\left(tm\right)}\)
+) Với t = 1. Ta có:
\(2\sqrt{x+2}+\sqrt{4x+1}=1\)
<=> \(8x+9+4\sqrt{4x^2+9x+2}=1\)
<=> \(\sqrt{4x^2+9x+2}=-2-2x\)
<=> \(\hept{\begin{cases}-2-2x\ge0\\4x^2+9x+2=4x^2+8x+4\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le-1\\x=2\end{cases}}\)loại
+) Với t = 3. Ta có:
\(2\sqrt{x+2}+\sqrt{4x+1}=3\)
<=> \(8x+9+4\sqrt{4x^2+9x+2}=9\)
<=> \(\sqrt{4x^2+9x+2}=-2x\)
<=> \(\hept{\begin{cases}-2x\ge0\\4x^2+9x+2=4x^2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le0\\9x+2=0\end{cases}}\Leftrightarrow x=-\frac{2}{9}\left(tmdk\right)\)
Vây:...
ĐK \(x\ge\frac{-1}{4}\)
Với điều kiện đó ta có \(2\sqrt{x+2}+\sqrt{4x+1}>0\)
Biến đổi phương trình đã cho trở thành
\(7\left(2x+3+\sqrt{4x^2+9x+2}\right)7\left(2\sqrt{x+2}+\sqrt{4x+1}\right)\)
\(\Leftrightarrow2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\left(1\right)\)
Đặt \(t=2\sqrt{x+2}+\sqrt{4x+1}\left(t\ge\sqrt{7}\right)\)
\(t^2=8x+9+4\sqrt{4x^2+9x+2}\Rightarrow2x+\sqrt{4x^2+9x+2}=\frac{t^2-9}{4}\)
Thay vào (1) ta được \(t^2-4t+3=0\Leftrightarrow\orbr{\begin{cases}t=1\left(ktm\right)\\t=3\left(tm\right)\end{cases}}\)
Với t=3 ta có:\(2\sqrt{x+2}+\sqrt{4x+1}=3\)giải ra ta được \(x=\frac{-2}{9}\left(tm\right)\)
Vậy pt có 1 nghiệm duy nhất \(x=-\frac{2}{9}\)