Tam giác ABC vuông tại A, cosB=12/13. Không tính góc C, hãy tính các TSLG của góc C.
*giúm tớ vs ạ !!!*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2+14x+49}=11\)
\(\Rightarrow\sqrt{\left(x+7\right)^2}=11\)
\(\Rightarrow x+7=11\)
\(\Rightarrow x=11-7=4\)
ahihi mik ms lớp 8
\(\sqrt{x^2+14x+49}=11\)
\(\Leftrightarrow\sqrt{\left(x+7\right)^2}=11\)
\(\Leftrightarrow x+7=11\)
\(\Leftrightarrow x=11-7=4\)
Vậy x = 4
Chúc bạn học tốt nhé!
Diện tích xung quanh của hình lăng trụ đứng bằng tổng diện tích các mặt bên hoặc bằng chu vi đáy nhân với chiều cao.
Sxq = 2p.h
p là nửa chu vi đáy, h là chiều cao
# Học tốt #
1. Diện tích xung quanh :
Diện tích xung quanh của hình lăng trụ đứng bằng tổng diện tích các mặt bên hoặc bằng chu vi đáy nhân với chiều cao.
\(S_{xq}\) = \(2p.h\)
p là nửa chu vi đáy, h là chiều cao.
2. Diện tích toàn phần :
Diện tích toàn phần của hình lăng trụ bằng tổng diện tích xung quanh và diện tích 2 đáy.
a+b+c+ab+bc+ac = 6abc \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Cmtt : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)
Ta có : \(\left(\frac{1}{a}-1\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+1\ge\frac{2}{a}\)
Cmtt : \(\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)
\(3A+3\ge2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2.6=12\)
\(\Leftrightarrow A+1\ge4\Leftrightarrow A\ge3\left(đpcm\right)\)
Chúc bạn học tốt !!!